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Abstract. A theorem of Delorme states that every unitary representation of
a connected Lie group with nontrivial reduced first cohomology has a finite-
dimensional subrepresentation. More recently Shalom showed that such a
property is inherited by cocompact lattices and stable under coarse equivalence
among amenable coutable discrete groups. In this note we give a new geometric
proof of Delorme’s theorem which extends to a larger class of groups, including
solvable p-adic algebraic groups, and finitely generated solvable groups with
finite Prüfer rank. Moreover all our results apply to isometric representations
in a large class of Banach spaces, including reflexive Banach spaces. As ap-
plications, we obtain an ergodic theorem in for integrable cocycles, as well as
a new proof of Bourgain’s Theorem that the 3-regular tree does not embed
quasi-isometrically into a superreflexive Banach space.

Contents

1. Introduction 1
2. Preliminaries on Banach modules 9
3. Induction 14
4. Properties WAPt and WAPap 17
5. A dynamical criterion for property WAPap 25
6. Groups in the class C 29
7. Proof of Theorem 4 and other results 34
8. Subgroups of GL(n,Q) 36
9. Mean ergodic theorem and Bourgain’s theorem 40
References 42

1. Introduction

1.1. Background. Let G be a locally compact group. We consider representa-
tions of G into Banach spaces. It is thus convenient to call G-module a Banach
space V endowed with a representation ρ of G, by bounded automorphisms, in
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a way that the mapping g 7→ gv = ρ(g)v is continuous for all v ∈ V . We will
denote by V G the subspace of G-fixed points.

The space Z1(G, V ) (also denoted Z1(G, ρ)) of 1-cocycles is the set of contin-
uous maps b : G→ V satisfying the 1-cocycle condition ρ(gh) = ρ(g)b(h) + b(g).
It is endowed with the topology of uniform convergence on compact subsets. The
subspace of coboundaries B1(G, V ) consists of those b of the form b(g) = v−ρ(g)v
for some v ∈ V . It is not always closed, and the quotient of Z1(G, V ) by its clo-

sure is called the first reduced cohomology space H1(G, V ) (or H1(G, ρ)). See
notably the reference book [G80].

Vanishing properties of the first reduced cohomology has especially been stud-
ied in the context of unitary representations on Hilbert spaces. If G satisfies
Kazhdan’s Property T, it is a classical result of Delorme that H1(G, V ) = 0
(and actually H1 itself vanishes) for every unitary Hilbert G-module V . See also
[BHV08, Chapter 2]. For G a discrete finitely generated group, the converse
was established by Mok and Korevaar-Schoen [M95, KS97]: if G fails to satisfy

Kazhdan’s Property T then H1(G, V ) 6= 0 for some unitary Hilbert G-module
V . A more metrical proof was provided by Gromov in [G03], and Shalom [S00]
extended the result to the setting of non-discrete groups, see also [BHV08, Chap.
3].

The groups in which we will be interested will usually be amenable (and non-
compact), so that this non-vanishing result holds. However, it often happens
that unitary representations with non-vanishing 1-cohomology for a given group
are rare. For instance, it is an easy observation of Guichardet [G72] that if G is
abelian, or more generally nilpotent, and V is a Hilbert G-module with V G = 0,
then H1(G, π) = 0. In particular, the only irreducible unitary representation with

non-vanishing H1 is the trivial 1-dimensional representation. Shalom [Sh04] thus
introduced the following terminology: if G satisfies the latter property, it is said
to satisfy Property Ht. He also introduced a natural slightly weaker invariant: G
has Property Hfd if for every unitary Hilbert G-module with no G-submodule (=

G-invariant closed subspace) of positive finite dimension, we have H1(G, V ) = 0.
This can also be characterized as follows: G has Property Hfd if and only if every
irreducible unitary representation with H1 6= 0 has finite dimension, and there
are only countably many up to equivalence. Nontrivial examples were provided
by the following theorem of P. Delorme.

Theorem ([D77], Th. V6, Cor. V2). Let G be a connected solvable Lie group and
let V be an irreducible unitary G-module. Assume that V is not a tensor power
of a character occurring as quotient of the adjoint representation. Then V has
zero first reduced cohomology.

Using Shalom’s subsequent terminology, it follows that connected solvable Lie
group have Property Hfd. Florian Martin [Ma06] extended this (and the above
theorem) to arbitrary amenable connected Lie groups.



VANISHING OF REDUCED COHOMOLOGY FOR BANACHIC REPRESENTATIONS 3

Delorme’s proof takes more than 10 pages, involving a lot of ad-hoc analytical
arguments and strongly relies on representation theory of the Lie algebra. It
implies in particular that such G has Property Hfd. Shalom proved in [Sh04] that
Property Hfd is invariant under passing to cocompact lattices. As a consequence,
it is satisfied by virtually polycyclic groups: indeed such a group Γ has a finite
index subgroup Γ′ embedding as a cocompact lattice in a group G as in the
theorem, and then Property Hfd thus successively passes from G to Γ′ and then
to Γ.

A motivation for PropertyHfd is to find interesting finite-dimensional represen-
tations. More precisely, if G is an infinite discrete amenable group with Property
Hfd, it is easy to deduce that G admits an infinite virtually abelian quotient.

In this work, we provide a new, simpler proof of Delorme’s theorem based on
geometric/dynamical considerations. This allows to extend the previous results
in two directions: first our approach allows to encompass a much larger class of
groups, and second it allows to generalize it to uniformly bounded representations
in more general Banach spaces.

A crucial feature which is used all the time in the context of unitary represen-
tations is the notion of “orthogonal complement”. Although this notion does not
survive in the more general framework of Banach spaces, a weaker and yet very
powerful property holds for a large class of Banach G-modules: the subspace of
invariant vectors is a factor, in fact it admits a canonical complement.

Recall that a G-module (V, π) is called weakly almost periodic (WAP for short)
if for every v ∈ V , the orbit π(G)v is relatively compact in V in the weak
topology. Note that this does not depend on a choice of topology on G. As
observed in [BRS13], it implies that ρ is a uniformly bounded representation:
supg∈G ‖ρ(g)‖ < ∞, and in case V is reflexive, this is equivalent to being a uni-
formly bounded representation. WAP representations turn out to be a convenient
wide generalization of unitary representations.

Definition 1. We say that a locally compact group G has Property WAPt if
every WAP G-module V with V G = {0} has H1(G, V ) = 0.

Property WAPt is a strengthening of Property Ht. Using that there a G-
invariant complement ([BRS13, Theorem 14], see §2.4), this means that for every
WAP G-module V , the reduced 1-cohomology is “concentrated” in V G. Observe
that a 1-cocycle valued in V G is just a continuous group homomorphism. It
follows, for instance that for a compactly generated, locally compact group G
without Kazhdan’s Property T (e.g., amenable and non-compact), the condition
Hom(G,R) = 0 is an obstruction to Property Ht, and hence to PropertyWAPt.

This explains why it is, in the context of unitary representations, natural to
deal with the more flexible Property Hfd. Defining an analogue in this broader
context leads to some technical difficulties, which leads us to introduce two dis-
tinct notions. First, recall that a Banach G-module is almost periodic if all orbits
closures are compact (in the norm topology). This is obviously a strengthening of
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being WAP. This is satisfied by finite-dimensional uniformly bounded modules,
and it can be checked (Corollary 2.8) that a uniformly bounded Banach G-module
is almost periodic if and only if the union of its finite-dimensional submodules
is dense. In general, the set of vectors whose G-orbit has compact closure is a
closed submodule, denoted V G,ap, and, by the above, equals the closure of the
union of finite-dimensional submodules.

Definition 2. Let G be a locally compact group.

• G has Property WAPap if for every WAP Banach G-module V with

V G,ap = 0 we have H1(G, V ) = 0;
• G has Property WAP fd if for every WAP Banach G-module V and every

1-cocycle b that is nonzero in H1(G, V ), there exists a closed submodule
W of nonzero finite codimension such that the projection of b on V/W is
unbounded.

Since finite-codimensional submodules are complemented (Proposition 2.12),
Property WAP fd implies Property WAPap. We do not know if the converse
holds (see Question 4.5 and the discussion around it).

1.2. Main results. In the sequel, we abbreviate “compactly generated locally
compact” as “CGLC”.

Our main result is the fact that a relatively large class of CGLC groups, includ-
ing connected solvable Lie groups, algebraic solvable p-adic groups, and finitely
generated solvable groups with finite Prüfer rank, satisfy propertyWAPap. Even
in the case of connected solvable Lie groups, the proof is not merely an adapta-
tion of Delorme’s proof, which is specific to the Hilbert setting. Instead it uses a
dynamical phenomenon which is very specific to these groups.

In order to illustrate this dynamical phenomenon, let us examine the simplest
example where it arises: the affine group Aff(R) := U o A, where U ' A ' R,
and where the group law is given by (x, t)(y, s) = (x+ ety, t+ s). The important
feature of this group is the fact that the normal subgroup U is “contracted” by
the action of A: i.e. given at = (0, t) ∈ A and u = (x, 0) ∈ U , one has

a−1
t uat = (e−tx, 0),

from which we deduce that a−1
t uat → (0, 0) as t → ∞. The group Aff(R) turns

out to have PropertyWAPt, and, roughly speaking, the proof consists in proving
that U behaves as if it did not exist at all, so that everything boils down to the
fact that A itself satisfies WAPt.

An elaboration of this argument applies to the following ad-hoc class of groups:

Definition 3. Denote by C the class of (solvable) locally compact groups G
having two closed subgroups U and N such that

(1) U is normal and G = UN ;
(2) N is a CGLC compact-by-nilpotent group, i.e., is compactly generated

and has a compact normal subgroup such that the quotient is nilpotent;
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(3) U decomposes as a finite direct product
∏
Ui, where each Ui is normalized

by the action of N and is an open subgroup of a unipotent group Ui(Ki)
over some non-discrete locally compact field of characteristic zero Ki.

(4) U admits a cocompact subgroup V with, for some k, a decomposition
V = V1V2 . . . Vk where each Vi is a subset such that there is an element
t = ti ∈ N such that t−nvtn → 1 as n→∞ for all v ∈ Vi.

This notably includes (see Proposition 6.1)

• real triangulable connected Lie groups;
• groups of the form G = G(Qp), where G is a solvable connected linear

algebraic group defined over the p-adic field Qp such that G is compactly
generated;
• mixtures of the latter, such as the semidirect product (K1×K2)o(t1,t2) Z,

where Ki is a nondiscrete locally compact field and |ti| 6= 1.

Let us also pinpoint that in many cases, the method applies without the char-
acteristic zero assumption in (3). Namely, assuming that U = U0×

⊕
p Up where

U0 is the characteristic zero part and Up is the p-torsion (p ranges over primes,
with only finitely many p for which Up 6= 1), this applies if for every p > 0, Up is
(p− 1)-step-nilpotent, so that it naturally has a Lie algebra, and this Lie algebra
has a G-invariant structure of Lie algebra over Fp((t)).

Here is our first main result

Theorem 4. Locally compact groups in the class C have Property WAPt. In
particular, they have Property Ht.

The proof of Theorem 4 involves several steps of independent interest, includ-
ing the existence of “strong controlled Følner subsets” for groups in the class C
(Theorem 6.10).

In order to extend Theorem 4, we use induction methods as in [Sh04, BFGM07]
to obtain

Theorem 5. (see Section 4)

(1) Properties WAPt and WAPap are inherited by closed cocompact sub-
groups such that the quotient has an invariant probability measure. In
particular these properties are inherited by closed cocompact subgroups
among amenable groups.

(2) Properties WAPt and WAPap are invariant (i.e., both the property and
its negation is stable) under taking quotients by compact normal sub-
groups.

(3) Let G be a locally compact group with a closed normal cocompact sub-
group N . If N has Property WAPt then G has Property WAPap.

(4) Let Λ be a countable discrete group with PropertyWAPap and Γ a count-
able discrete group admitting an RCE (random cocompact embedding, see
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§3.2.1) into Λ. Then Γ also has Property WAPap. In particular, Prop-
erty WAPap is stable under coarse equivalence among countable discrete
amenable groups.

We introduce the terminology RCE to name a slight reinforcement of uniform
measure equivalence used in [Sh04].

Definition 6. Let C′ be the larger class consisting of those locally compact
groups G such that there exists a sequence of copci (= continuous, proper with
cocompact image) homomorphisms G→ G1 ← G2 → G3 such that the image of
G2 → G1 is normal in G1 and G3 belongs to the class C.

This may sound a bit artificial, but the point is that this definition ensures that
all amenable, virtually connected Lie groups belong to the class C′ (Proposition
6.2), as well as all groups with a open finite index subgroup in the class C.

Corollary 7. Locally compact groups in the class C′ have Property WAP fd. In
particular, they have Property Hfd.

Corollary 8. Every virtually connected amenable Lie group G has Property
WAP fd.

In view of Proposition 6.1, we deduce

Corollary 9. Real-triangulable Lie groups and compactly generated amenable
Zariski-(closed connected) subgroups of GLn(Qp) have WAPt.

We combine these results to obtain the following Banach space version of De-
lorme’s theorem.

Corollary 10. (see Corollary 7.5) Let G be a connected solvable Lie group. Then
every WAP G-module with nonzero first cohomology has a 1-dimensional factor
(with nonzero first cohomology).

We can also apply Theorem 4 to deduce many new examples of discrete groups
with Property WAPap.

Corollary 11. The class of groups satisfying Property WAPap includes all dis-
crete groups that are virtually cocompact lattices in a finite direct product of
connected Lie groups and algebraic groups over Qp (for various primes p). This
includes polycyclic groups and more generally all amenable groups already known
to satisfy Property Hfd (see [Sh04]). Some of these, being cocompact lattices in
groups in the class C, actually have Property WAPt: this includes for instance
of SOL, solvable Baumslag-Solitar groups and lamplighter groups (Z/nZ) o Z.

We can also, along with additional structural work, deduce the following result,
which answers a question of Shalom [Sh04] (who asked whether these groups have
Hfd).

Recall that a group has finite Prüfer rank if for some k, all its finitely generated
subgroups admit a generating k-tuple. Let us abbreviate “virtually solvable of
finite Prüfer rank” to “VSP”.
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Theorem 12. (Corollary 8.11) Every finitely generated, VSP group has Property
WAP fd, and in particular has Property Hfd.

Finitely generated amenable (or equivalently, virtually solvable) subgroups of
GL(d,Q) are notably covered by the theorem: more precisely, these are precisely
(when d is allowed to vary) the virtually torsion-free groups in the class of finitely
generated VSP groups. Actually, the theorem precisely consists of first proving it
in this case, and deduce the general case using a recent result of Kropholler and
Lorensen [KL17]: every finitely generated VSP group is quotient of a virtually
torsion-free finitely generated VSP group.

We deduce the following strengthening of [Sh04, Theorem 1.3], which is the
particular case of polycyclic groups.

Corollary 13. Let Λ be a finitely generated, (virtually) solvable group of finite
Prüfer rank. Let Γ be a finitely generated group quasi-isometric to Λ. Then Γ
has a finite index subgroup with infinite abelianization.

Proof. This consists in combining Theorem 12 with two results of Shalom:

• [Sh04, Theorem 4.3.1], which says that every infinite finitely generated
amenable group with Property Hfd has a finite index subgroup with infi-
nite abelianization;
• [Sh04, Theorem 4.3.3]: among finitely generated amenable groups, Prop-

erty Hfd is a quasi-isometry invariant. �

1.3. Cocompact hull of amenable subgroups of GL(d,Q). Our proof of
Theorem 12 relies on a construction of independent interest. We start introducing
a second variant of the class C.

Definition 14. Let C′′ be the class of compactly generated locally compact
groups defined as the class C (Definition 3) but replacing (3) with: N has poly-
nomial growth.

Theorem 15. Every finitely generated amenable (= virtually solvable) subgroup
of GLm(Q) embeds as a compact lattice into a locally compact group G with an
open subgroup of finite index G′ in the class C′′.

This is a key step in the proof of Theorem 12. Let us pinpoint other conse-
quences of the existence of this cocompact hull.

Let G be a compactly generated locally compact group, and let λ be the left
representation of G on real-valued functions on G, namely λ(g)f(x) = f(g−1x).
We let S be a compact symmetric generating subset of G. For any 1 ≤ p ≤ ∞,
and any subset A of G, define

Jp(A) = sup
f

‖f‖p
sups∈S ‖f − λ(s)f‖p

,
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where f runs over functions in Lp(G), supported in A. Recall [T08] that the
Lp-isoperimetric profile inside balls is given by

J bG,p(n) = Jp(B(1, n)).

Corollary 16. (see Corollary 8.12) For every finitely generated VSP group G
equipped with a finite generating subset S, we have

J bG,p(n) � n,

i.e., there exists c > 0 such that J bG,p(n) ≥ cn for all n.

Corollary 16 has a consequence in terms of equivariant Lp-compression rate.
Recall that the equivariant Lp-compression rate Bp(G) of a locally compact com-
pactly generated group is the supremum of those 0 ≤ α ≤ 1 such that there exists
a proper isometric affine action σ on some Lp-space satisfying, for all g ∈ G,
‖σ(g).0‖p ≥ |g|αS − C for some constant C <∞. It follows from [T11, Corollary
13] that for a group G with J bG,p(n) � n, we have Bp(G) = 1; hence

Corollary 17. Let 1 ≤ p <∞, and G be a finitely generated VSP group. Then
Bp(G) = 1.

See also [T11, Theorem 10] for a finer consequence.

1.4. An mean ergodic theorem in L1. Let X be a probability space and let
T : X → X be a measure-preserving ergodic self-map of X. Recall that Birkhoff’s
theorem states that for all f ∈ L1(X), the sequence 1

n

∑n−1
i=0 T

i(f) converges a.e.

and in L1 to the integral of f . Observe that the map n 7→ c(n) =
∑n−1

i=0 T
i(f) ∈

L1(X) (a priori well defined on positive integers, and more generally on Z if
T is invertible) satisfies the cocycle relation: c(n + 1) = T (c(n)) + c(1). Hence,
assuming that T is invertible, Birkhoff’s ergodic theorem can be restated in a more
group-theoretic fashion: given an ergodic measure measure-preserving action of
Z on a probability space X, every continuous cocycle c ∈ Z1(Z, L1(X)) is such
that

1

|n|

(
c(n)(x)−

∫
c(n)(x′)dµ(x′)

)
→ 0,

both a.e. and in L1. By measure-preserving action of G on a probability space X,
we mean a measurable map G×X → X, denoted (g, x) 7→ g.x (G being endowed
with the Lebesgue σ-algebra), such that for every g, h ∈ G, the functions g.(hx)
and (gh)x coincide outside a subset of measure zero. This makes Lp(G) a Banach
G-module for all 1 ≤ p <∞.

A generalization of this result is due to Boivin and Derriennic [BD91] for Zd

(and similarly for Rd). To obtain almost sure convergence, stronger integrability
conditions are required when d > 1 (see [BD91, Theorems 1 and 2]). Here
however, we focus on convergence in L1:
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Definition 18. A CGLC group G satisfies the mean ergodic theorem for cocycles
in L1 if for every ergodic measure-preserving action of G on a probability space
X, and every continuous cocycle c ∈ Z1(G,L1(X)), we have

lim
|g|→∞

1

|g|

(
c(g)(x)−

∫
X

c(g)(x′)dµ(x′)

)
= 0,

where the convergence is in L1(X), and |g| denotes a word length on G associated
to some compact generating subset.

In [BD91, Theorem 4], Boivin and Derriennic prove that Zd and Rd satisfy the
mean ergodic theorem in L1. We start by the following observation.

Proposition 19. A group G with Property WAPap satisfies the mean ergodic
theorem for 1-cocycles in L1 if and only if G satisfies WAPt.

The if part immediately follows from the well-known fact [EFH15, Corollary
6.5] that the representation of G on L1(X) is WAP. The “only if” part is more
anecdotical, see §9 for the proof.

Corollary 20. Groups in the class C and their closed cocompact subgroups
satisfy the ergodic theorem for cocycles in L1.

To our knowledge, this is new even for the group SOL. For nilpotent groups,
it can be easily deduced from Proposition 19 together with the fact that these
groups have WAPt, an observation due to [BRS13].

1.5. Bourgain’s theorem on tree embeddings. We obtain a new proof of
the following result of Bourgain.

Corollary 21 (Bourgain, [Bo86]). The 3-regular tree does not quasi-isometrically
embed into any superreflexive Banach space.

The idea is to use a CGLC group in the class C that is quasi-isometric to the
3-regular tree, and make use of amenability and Property WAPt. In [CTV07],
the authors and Valette used a similar argument based on property Ht to show
Bourgain’s result in the case of a Hilbert space. See Section 9 for the proof.

2. Preliminaries on Banach modules

2.1. First reduced cohomology versus affine actions. Let G be a locally
compact group, and (V, π) be a Banach G-module.

Observe that, given a continuous function b : G → V , we can define for every
g ∈ G an affine transformation αb(g)v = π(g)v + b(g). Then the condition
b ∈ Z1(G, π) is a restatement of the condition αb(g)αb(h) = αb(gh) for all g, h ∈
G, meaning that α is an action by affine transformations. Then the subspace
B1(G, π) is the set of b such that αb has a G-fixed point, and its closure B1(G, π)
is the set of 1-cocycles b such that the action αb almost has fixed points, that is,
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for every ε > 0 and every compact subset K of G, there exists a vector v ∈ V
such that for every g ∈ K,

‖αb(g)v − v‖ ≤ ε.

If G is compactly generated and if S is a compact generating subset, then this is
equivalent to the existence of a sequence of almost fixed points, i.e. a sequence
vn of vectors satisfying

lim
n→∞

sup
s∈S
‖αb(s)vn − vn‖ = 0.

2.2. Almost periodic actions.

Definition 2.1 (Almost periodic actions). Let G be a group acting on a metric
space X. Denote by XG,ap the set of x ∈ X whose G-orbit has a compact closure
in X. Say that X is almost (G-)periodic if XG,ap = X.

Note that this definition does not refer to any topology on G. Although we
are mainly motivated by Banach G-modules, some elementary lemmas can be
established with no such restriction.

The following lemma is well-known when X = V is a WAP Banach G-module.

Lemma 2.2. Let G be a group and X a complete metric space with a uniformly
Lipschitz G-action (in the sense that C < ∞, where C is the supremum over g
of the Lipschitz constant Cg of the map x 7→ gx). Then XG,ap is closed in X.

Proof. Let v be a point in the closure of XG,ap. Choose vj ∈ XG,ap with v =
limj vj.

Let (gn) be a sequence in G. We have to prove that (gnv) has a convergent
subsequence. First, up to extract, we can suppose that (gnvj) is convergent for
all j. Then for all m,n, j we have

d(gnv, gmv) ≤d(gnv, gnvj) + d(gnvj, gmvj) + d(gmvj, gmv)

≤2Cd(v, vj) + d(gnvj, gmvj).

Now fix ε > 0 and choose j such that d(v, vj) ≤ ε/3. Then there exists n0 such
that for all n,m ≥ n0, we have d(gnvj, gmvj) ≤ ε/3. It then follows from the
above inequality that for all n,m ≥ n0, we have d(gnv, gmv) ≤ ε. �

Lemma 2.3. Let G be a locally compact group and H a closed cocompact sub-
group. Let X be a metric space with a uniformly Lipschitz, separately continuous
G-action. Then XH,ap = XG,ap.

Proof. Choose x ∈ XH,ap. Choose a compact subset K ⊂ G such that G = KH.
Let (gnx) be any sequence in the G-orbit of x. Write gn = knhn with kn ∈ K,

hn ∈ H. We can find an infinite subset I of integers such that kn
n∈I−−→
n→∞

k and
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hnv
n∈I−−→
n→∞

w. Then, denoting C the supremum of Lipschitz constants, we have

d(gnx, kw) = d(knhnx, kw) ≤d(knhnx, knw) + d(knw, kw)

≤Cd(hnx,w) + Cd(w, k−1
n kw)

n∈I−−→
n→∞

0.

Thus the G-orbit of x has compact closure, that is, x ∈ V G,ap, showing the
nontrivial inclusion. �

Proposition 2.4. Let G be a topological group and (X, π) a metric space with a
separately continuous uniformly Lipschitz G-action (denoted gx = π(g)x). Then
X is almost G-periodic if and only if the action of G on X factors through a
compact group K with a separately continuous action of K on X and a continuous
homomorphism with dense image G→ K.

Proof. The “if” part is immediate. Conversely, suppose that X is almost periodic.
Let O be the set of G-orbit closures in X. Each Y ∈ O is a compact metric space;
let IY be its isometry group; we thus have a continuous homomorphism G→ IY .
So we have a canonical continuous homomorphism q : G→

∏
Y ∈O Y ; let K be the

closure of its image; this is a compact group. We claim that the representation
has a unique separately continuous extension to K. The uniqueness is clear. To
obtain the existence, consider any net (gi) in g such that (q(gi)) converges in
K, π(gi)v converges in X for every v ∈ X. Indeed, we have d(π(g−1

i gj)v, v) →
0 when i, j → ∞, and hence, since the representation is uniformly bounded,
d(π(gj)v, π(gi)v) tends to 0. So (π(gi)v) is Cauchy and thus converges; the limit
only depends on v and on the limit k of (q(gi)); we define it as π̃(k)v.

Also, if c is the supremum of all Lipschitz constants, then, as a pointwise limit
of c-Lipschitz maps, π̃(k) is c-Lipschitz.

Now let us show that it defines an action of K, namely π̃(k)π̃(`) = π̃(k`) for
all k, ` in K. We first claim that k 7→ π̃(k)v is continuous for every fixed v ∈ X.
Indeed, if Y is the closure of the orbit of v, then this map can be identified to the
orbital map of the action of the image of k in IY , which is continuous. The same
argument shows that (k, `) 7→ π̃(k)π̃(`)v is continuous, and also this implies, by
composition, that (k, `) 7→ π̃(k`)v is continuous. Since these two maps coincide
on the dense subset q(G) × q(G), they agree. Thus π̃ defines an action, and we
have also checked along the way that it is separately continuous. �

2.3. Almost periodic Banach modules. We recall the following well-known
fact.

Lemma 2.5. Let G be a group and (V, π) a Banach G-module. If every G-orbit
is bounded, then the representation is uniformly bounded. In particular,

• every WAP representation is uniformly bounded;
• for G compact, every Banach G-module is uniformly bounded.
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Proof. Define Vn = {v ∈ V : ∀g ∈ G, ‖gv‖ ≤ n}. Since the action is by bounded
(=continuous) operators, Vn is closed for all n. Since all G-orbits are bounded,⋃
n Vn = V . By Baire’s theorem, there exists Vn with non-empty interior. Since

Vn = −Vn and Vk + V` ⊂ Vk+` for all k, `, the set V2n contains the centered ball
of radius ε for some ε > 0. This implies that supg∈G ‖π(g)‖ ≤ 2n/ε.

(Note that the last consequence was not a trivial consequence of the definition,
since the map g 7→ π(g) often fails to be continuous for the norm topology on
operators.) �

Lemma 2.6. Let V be a Banach G-module. Then V G,ap is a subspace of V .

Proof. This is clear since G(λv + w) ⊂ λGv +Gw for all v, w. �

Theorem 2.7. [Shi55, Theorem 2] Let G be a compact group and (V, π) be a
Banach G-module. Then the sum of finite-dimensional irreducible G-submodules
of V is dense in V .

Let now G be an arbitrary topological group. Recall that a Banach G-module
is almost periodic if every G-orbit is relatively compact in the norm topology.

Corollary 2.8. Let V be a uniformly bounded Banach G-module. Then V G,ap

is the closure of the sum of all finite-dimensional submodules of V , and is also
the closure of the sum all irreducible finite-dimensional submodules of V .

Proof. Let V G,ap, V2, V3 be the three subspaces in the corollary. That V3 ⊂ V2 is
clear.

That every finite-dimensional submodule is contained in V G,ap is clear (even
without assuming V uniformly bounded). So the sum of all finite-dimensional
submodules is contained in V G,ap, and hence its closure by Lemma 2.2, since V
is uniformly bounded. So V2 ⊂ V G,ap.

For the inclusion V G,ap ⊂ V3, we use that the G-action on V G,ap factors through
a compact group (Proposition 2.4), and then invoke Theorem 2.7. �

Definition 2.9. Let G be a locally compact group and let (V, π) be a Banach
G-module. Define V ∗[G] as the set of f ∈ V ∗ such that the orbital function νf :
g 7→ g · f is continuous on G.

Lemma 2.10. Let G be a locally compact group and (V, π) be a Banach G-
module. Then V ∗[G] is a closed subspace of V ∗ (and thus is a Banach G-module).
Moreover, V ∗[G] separates the points of G.

Proof. That V ∗[G] is a subspace is clear.

Write c = supg∈G ‖π(g)‖ (it is finite by Lemma 2.5). For f, f ′ ∈ V ∗ and v ∈ V ,
we have

νf (g)(v)− νf ′(g)(v) = (g · f)(v)− (g · f ′)(v) = (f − f ′)(g−1v);

hence
‖νf (g)(v)− νf ′(g)(v)‖ ≤ ‖f − f ′‖‖g−1v‖ ≤ c‖f − f ′‖‖v‖
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and thus
‖νf (g)− νf ′(g)‖ ≤ c‖f − f ′‖

Suppose that (fn) converges to f , with fn ∈ V ∗[G] and f ∈ V ∗. The above
inequality shows that νfn converges uniformly, as a function on G, to νf . By
assumption, νfn is continuous, and thus νf is continuous, meaning that f ∈ V ∗[G].

For the separation property, we consider v ∈ V r {0} and have to find an
element in V ∗[G] not vanishing on v. First, we choose f ∈ V ∗ such that f(v) = 1.

For every g ∈ G, (g ·f)(v) = f(g−1v), and hence q : g 7→ (g ·f)(v) is continuous
on G; we have q(1) = 1. Let U be a compact neighborhood of 1 in G on which
q takes values ≥ 1/2. Let ϕ be a non-negative continuous function on G, with
support in U , and integral 1 (G being endowed with a left Haar measure).

For ξ ∈ V , define u(ξ) =
∫
G
ϕ(g)f(g−1ξ)dg. Then u is clearly linear, and

‖u‖ ≤ c‖f‖, so u is continuous. We have u(v) =
∫
G
hnq ≥ 1/2.

It remains to show that u ∈ V ∗[G]. It is enough to check that h 7→ h · u is
continuous at 1. We have, for h ∈ G and ξ ∈ V

u(ξ)− (h · u)(ξ) =

∫
G

ϕ(g)f(g−1ξ)dg −
∫
G

ϕ(g)f(g−1h−1ξ)dg

=

∫
G

ϕ(g)f(g−1ξ)dg −
∫
G

ϕ(h−1g)f(g−1ξ)dg

=

∫
G

(ϕ(g)− ϕ(h−1g))f(g−1ξ)dg.

Define εh = supg∈G |ϕ(g)−ϕ(h−1g)|. Since ϕ has compact support, it is uniformly
continuous. Hence εh tends to 0 when h→ 1. We conclude

‖u(ξ)− (h · u)(ξ)‖ ≤ εh

∫
G

|f(g−1ξ)|dg ≤ εhc‖f‖‖ξ‖,

so ‖u− h · u‖ ≤ εhc‖f‖, which tends to 0 when h→ 1. �

Proposition 2.11. Let V be an almost periodic Banach G-module. Then every
finite-dimensional submodule is complemented in V as G-module.

Proof. By Proposition 2.4, we can suppose that G is compact.
Let C be a finite-dimensional submodule; let us show, by induction on d =

dim(C), that C is complemented. This is clear if d = 0; assume now that C is
irreducible. Beware that V ∗ need not be a Banach G-module (G does not always
act continuously). We consider the subspace V ∗[G] ⊂ V of Definition 2.9, which is a
Banach G-module by Lemma 2.10. Let F ⊂ V ∗[G] the sum of all irreducible finite-
dimensional submodules. By Theorem 2.7, F is dense in V ∗[G], and by Lemma 2.10,
the latter separates the points of V . So there exists an element in F that does not
vanish on C. In turn, this means that there is an irreducible finite-dimensional
submodule M of F that does not vanish on C, or equivalently whose orthogonal
W does not contain C. Note that W ⊂ V is closed and that M is isomorphic, as
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G-module, to the dual of V/W ; in particular, V/W is an irreducible G-module;
in other words, W is maximal among proper G-submodules of V . It follows that
V = C ⊕W .

If C is not irreducible, let C ′ be a nonzero proper submodule. Then by induc-
tion, C/C ′ is complemented in V/C ′, which means that V = C + W with W a
G-submodule and W ∩ C = C ′. By induction, we can write W = C ′ ⊕W ′ with
W ′ a submodule. Hence V = C ⊕W ′. �

Proposition 2.12. Let V be an almost periodic Banach G-module. Then every
finite-codimensional submodule is complemented in V as G-module.

Proof. Let W be a submodule of finite codimension. Lift a basis of the quotient to
a family in the complement (e1, . . . , en). Then there exists an open ball Bi around
ei such that for every (e′1, . . . , e

′
n) ∈

∏
Bi, the family (e′1, . . . , e

′
n) projects to a

basis of V/W . Since by Corollary 2.8, the union of finite-dimensional submodules
of V is dense, we can choose e′i to belong to a finite-dimensional submodule Fi,
and define F =

∑
Fi.

Then F is a finite-dimensional G-submodule and F+W = V . Then G preserves
a scalar product on F , so preserves the orthogonal F ′ of F ∩W for this scalar
product. Thus V = F ′ ⊕W . �

2.4. Canonical decompositions. We use the following known results.

Theorem 2.13. Let G be a locally compact group and V a WAP G-module.
Then

(1) V G has a canonical complement, consisting of those v such that 0 belongs
to the closure of the convex hull of the orbit Gv;

(2) V G,ap has a canonical complement, consisting of those v such that 0 be-
longs to the weak closure of the orbit Gv.

Here by complement of a subspace W1 in a Banach space V we mean a closed
submodule W2 such that the canonical map W1 ⊕W2 → V is an isomorphism
of Banach spaces. The complement being here defined in a “canonical” way, it
follows that if G preserves these complements.

These statements are Theorems 14 and 12 in [BRS13]. The part (1) is due
to Alaoglu-Birkhoff [AB40] in the special case superreflexive G-modules (that is,
whose underlying Banach space is superreflexive), and [BFGM07, Proposition
2.6] in general. Part (2) is a generalized version of a theorem of Jacobs and de
Leeuw-Glicksberg, stated in this generality in [BJM].

3. Induction

3.1. A preliminary lemma.

Lemma 3.1. LetG be a locally compact group, let (E, π) be a continuous Banach
G-module. Let b : G → E satisfy the cocycle relation b(gh) = π(g)b(h) + b(g).
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If b is measurable and locally integrable, then it is continuous. Moreover if a
sequence (bn) in Z1(G, π) is locally uniformly bounded, i.e. for every compact
subset K ⊂ G, we have supg∈K,n∈N ‖bn(g)‖ <∞, and if (bn) converges pointwise
to b, then the convergence is uniform on compact subsets.

Proof. Pick a probability measure ν on G with compactly supported continuous
density φ and define b̃(g) =

∫
b(h)(φ(g−1h)− φ(h))dh. One checks (see the proof

of Lemma 5.2 in [T09]) that b̃ is continuous and that b̃(g) − b(g) = π(g)v − v,
where v =

∫
b(h)dν(h). Hence b is continous.

For the second statement, we first note that vn =
∫
bn(h)dν(h) converges to

v =
∫
b(h)dν(h), by Lebesgue’s dominated convergence theorem. So we are left

to consider (b̃n), which converges pointwise for the same reason. We conclude

observing that the b̃n are equicontinuous. Indeed, let g1, g2 ∈ G and define

C = sup{‖bn(g)‖; g ∈ g1supp(φ) ∪ g2supp(φ), n ∈ N}.

We have ‖b̃n(g1)− b̃n(g2)‖

=

∥∥∥∥∫ bn(h)(φ(g−1
1 h)− φ(g−1

2 h))dh

∥∥∥∥ ≤ C sup
h∈G
|φ(g−1

1 h)− φ(g−1
2 h)|,

and we conclude thanks to the fact that g 7→ φ(g−1) is uniformly continuous. �

3.2. Measure equivalence coupling. For the notions introduced in this sub-
section, we refer to [Sh04].

3.2.1. ME coupling and ME cocycles. Given countable discrete groups Γ and Λ,
a measure equivalence (ME) coupling between them is a nonzero σ-finite measure
space (X,µ), which admits commuting free µ-preserving actions of Γ and Λ which
both have finite-measure fundamental domains, respectively XΓ and XΛ. Let
α : Γ×XΛ → Λ (resp. β : Λ×XΓ → Γ) be the corresponding cocycle defined by
the rule: for all x ∈ XΛ, and all γ ∈ Γ, α(γ, x)γx ∈ XΛ (and symmetrically for
β). If, for any λ ∈ Λ and γ ∈ Γ, there exists finite subsets Aλ ⊂ Γ and Bγ ⊂ Λ
such that λXΓ ⊂ AλXΓ and γXΛ ⊂ BγXΛ, then we say the coupling is uniform,
and call it a UME coupling, in which case the groups Γ and Λ are called UME.
We now introduce the following reinforcement of UME.

Definition 3.2. A random cocompact embedding of Λ inside Γ is a UME cou-
pling satisfying in addition XΓ ⊂ XΛ.

3.2.2. Induction of WAP modules. We assume that Λ and Γ are ME and we let
α : Γ ×XΛ → Λ be the corresponding cocycle. Now let (V, π) be an Λ-module.
The induced module is the Γ-module (W, IndΓ

Λπ) defined as follows: W is the
space L1(XΛ, µ, V ) of measurable maps f : XΛ → V such that∫

XΛ

|f(x)|dµ(x) <∞,
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and we let Γ act on W by

IndΓ
Λπ(g)f(x) = π(α(g, x))(f(g−1 · x).

Proposition 3.3. If (V, π) is WAP, then so is (W, IndΓ
Λπ).

Proof. This follows from the main result of [Tal84]. �

3.2.3. Induction of cohomology. For simplicity, we shall restrict our discussion
to cohomology in degree one. We now assume that Λ and Γ are UME, and we
let α and β be the cocycles associated to some UME-coupling. Assume (V, π)
is a Banach Λ-module. Following [Sh04], we define a topological isomophism
I : H1(Γ, π)→ H1(Γ, IndΓ

Λπ) as follows: for every b ∈ Z1(Λ, π) define

Ib(g)(x) = b(α(g, x)),

for a.e. x ∈ X and all g ∈ Γ. Note that Ib is continuous by Lemma 3.1.
Observe that the UME assumption ensures that Ib(g) has finite norm for all

g ∈ G and therefore is a well-defined 1-cocycle. Now assume in addition that the
coupling satisfies XΓ ⊂ XΛ (i.e. that Λ randomly cocompact embeds inside Γ).

Then one can define an inverse T of I, defined for all c ∈ Z1(Γ, IndΓ
Λπ) and

h ∈ Γ by

Tc(h) =

∫
XΓ

c(β(h, y))(y)dµ(y).

The fact that I and T induce inverse maps in cohomology follows from the proof
of [Sh04, Theorem 3.2.1].

3.3. Induction from a closed cocompact subgroup. Let G be a LCSC group
and H a closed cocompact subgroup of finite covolume.

Let (V, π) be a WAP H-module. Let µ be a G-invariant probability measure on
the quotient G/H. Let E = L2(G/H, V, µ) be the space of Bochner-measurable
functions f : G/H → V such that ‖f‖ ∈ L2(G/H, µ). Let D ⊂ G be a bounded
fundamental domain for the right action of H on G; let s : G/H → D be the
measurable section. Define the cocycle α : G×G/H → H by the condition that

α(g, x) = γ ⇐⇒ g−1s(x)γ ∈ D,
We can now define a G-module (E, IndGHπ) induced from (V, π) by letting an
element g ∈ G act on f ∈ E by

(gf)(kH) = π(α(g, kH))f(g−1kH).

The fact that the induced representation is WAP follows from [Tal84].
Note that one can similarly induce affine actions (the same formula holds,

replacing π by an affine action σ). The corresponding formula for 1-cocycles
(corresponding to the orbit of 0) is as follows: given b ∈ Z1(H, π), one defines

the induced cocycle b̃ ∈ Z1(G, IndGHπ) by

b̃(h)(gH) = b(α(h, gH)).
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This defines a continuous cocycle by Lemma 3.1.
The map b→ b̃ induces a topological isomorphism in 1-cohomology (by Lemma

3.1). The inverse is defined as follows: given a cocycle c ∈ Z1(G, IndGHπ), one
gets a cocycle c̄ ∈ Z1(H, π) by averaging (see for instance [Sh04, Theorem 3.2.2]):

(3.4) c̄(γ) =

∫
D

c(xγx−1)(x)dµ(x).

Observe that that ¯̃b = b.

4. Properties WAPt and WAPap

4.1. The definitions.

Definition 4.1. Let G be a locally compact group. We say that G has

• Property WAPt if H1(G, V ) = 0 for every WAP Banach G-module V
such that V G = 0;
• Property WAPap if H1(G, V ) = 0 for every WAP Banach G-module V

such that V G,ap = 0;
• Property WAP fd if for every G-module V and b ∈ Z1(G, V ) that is not

an almost coboundary, there exists a closed G-submodule of positive finite
codimension modulo which b is unbounded.
• Property AP fd: same asWAP fd, but assuming that V is almost periodic.

There is a convenient restatement of the definition of WAP fd, in view of the
following lemma:

Lemma 4.2. Let V be an almost periodic Banach G-module and b a 1-cocycle.
The following are equivalent:

(1) there exists a G-module decomposition V = V1 ⊕ V2 such that dim(V1) <
∞ and, under the corresponding decomposition b = b1 + b2, we have b1

unbounded;
(2) there is a closed G-submodule W ⊂ V of positive finite codimension such

that the projection of b in V/W is unbounded.

Proof. Clearly (1) implies (2), and the converse follows from the fact that W is
complemented (Proposition 2.12). �

Proposition 4.3. PropertyWAP fd is equivalent to the conjunction of Properties
WAPap and AP fd.

Proof. It is obvious that WAP fd implies both other properties. Conversely, as-
sume that G has both latter properties. Let V be a G-module and let b be
a 1-cocycle that is not an almost coboundary. By Theorem 2.13(2), we have
V = V G,ap ⊕W for some G-submodule W . Let b = b1 + b2 be the corresponding
decomposition of b. Since WG,ap = 0, Property WAPap implies that b2 is an al-
most coboundary. Hence b1 is not an almost coboundary for the almost periodic
G-module V G,ap. Then Property AP fd yields the conclusion. �
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Proposition 4.4. G has PropertyWAPt (resp.WAPap) if and only if, for every
G-module V and b ∈ Z1(G, V ) that is not an almost coboundary, V G 6= 0 (resp.
V admits a nonzero finite-dimensional submodule).

Proof. The case WAPt is trivial and only stated to emphasize the analogy.
Suppose that G satisfies the given property (in the second case). Let V be

a WAP G-module with V G,ap = 0. Let b be a 1-cocycle. Since the condition
V G,ap = 0 implies that V has no nonzero finite-dimensional subrepresentation,
the assumption implies that b is an almost coboundary.

Conversely, suppose that G has Property WAPap. Let V and b be as in the
assumptions. By Theorem 2.13(2), write V = V G,ap ⊕W with W its canonical
complement. Decompose b = b1 + b2 accordingly. Then by Property WAPap, b2

is an almost coboundary. So b1 is not a coboundary. Hence V G,ap 6= 0. Hence, it
admits a nonzero finite-dimensional subrepresentation, by Corollary 2.8. �

As a consequence, we have the implications

WAPt ⇒WAP fd ⇒WAPap.

The left-hand implication is not an equivalence, for instance the infinite dihedral
group is a counterexample.

Question 4.5. Are Properties WAP fd and WAPap equivalent?

This is the case for the unitary Hilbert analogue, because any almost periodic
unitary Hilbert G-module can be written as an `2-direct sum of finite-dimensional
ones. A positive answer to the question, even with some restrictions on the class
of G-modules considered, would be interesting (at least if the given class has good
stability properties under induction of actions).

In view of Proposition 4.3, a positive answer would follow from a positive
answer to:

Question 4.6. Does Property AP fd hold for an arbitrary locally compact group
G?

In turn, a positive answer would result from the following less restrictive ques-
tion:

Question 4.7. Let G be a locally compact group and V an almost periodic
Banach G-module. Consider b ∈ Z1(G, V ) r B1(G, V ). Does there exist a G-
submodule of finite codimension W ⊂ V such that the image of b in Z1(G, V/W )
is unbounded?

For instance, the answer is positive in the case of unitary Hilbert G-modules.
See §4.6 for more on Property AP fd.
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4.2. Extension by a compact normal subgroup.

Proposition 4.8. Let 1 → K → G → Q → 1 be a short exact sequence of
locally compact groups, and assume that K is compact. Then G has property
WAPt (resp. WAPap, resp. WAP fd) if and only if Q does.

Proof. These properties are obviously stable under taking quotients.
For the converse, consider a WAP G-module (V, π). Let b be a 1-cocycle. Since

K is compact, we can find a cohomologous 1-cocycle b′ that vanishes on K. Then
b′ takes values in V K : indeed, for g ∈ G and k ∈ K, b(kg) = π(k)b(g) + b(k) =
π(k)b(g), so

π(k)b(g) = b(kg) = b(gg−1kg) = π(g)b(g−1kg) + b(g) = b(g).

If we assume that Q has Property WAPt, and we assume V G = 0, then
(V K)G = 0 and we deduce that b is an almost coboundary, showing that G has
PropertyWAPt. If we assume that Q has PropertyWAPap, and assume V G,ap =
0, we deduce that (V K)Q,ap = 0. It follows that b′ is an almost coboundary, and
hence b as well.

If we assume that Q has Property WAP fd, we first invoke Theorem 2.13(1):
we have V = V K ⊕W , where W is a canonically defined complement. Then by
PropertyWAP fd of Q, we have V K = W ′⊕W ′′, where W ′ is a finite-dimensional
G-submodule and b has an unbounded projection on W ′ modulo W ′′. This shows
that G has Property WAPap. �

4.3. Invariance of WAPt under central extension. The material of this
section uses some trick which was exploited in [ANT13] in the case of Heisenberg’s
group. See [Sh04, Theorem 4.1.3] in the Hilbert setting and [BRS13, Theorem 2]
for a more general statement (involving reduced cohomology in any degree).

Proposition 4.9. Let G be a locally compact group with a compactly generated,
closed central subgroup Z such that G/Z has Propery WAPt. Then G has
Property WAPt.

Proof. We start with the case when Z is discrete cyclic. Let 1→ Z→ G→ Q→
1 be a central extension where Q has propertyWAPt. Let V be a weakly almost
periodic Banach space and let (V, π) be a G-module with V G = 0, and let b be a
cocycle. Let V Z be the subspace of V consisting of fixed Z-vectors. Because Z is
central, V decomposes as a G-invariant direct sum V = V1 ⊕ V2, where V1 = V Z

and V2 is its canonical complement (Proposition 2.13(1)).
Let us decompose π = π1⊕π2 and b = b1⊕ b2 accordingly, with bi ∈ Z1(G, πi).

Since H
1
(G, π) = ⊕iH

1
(G, πi), it is enough to show that both terms in the direct

sum vanish. Let z be a generator of Z. Let us first show that H
1
(G, π2) = 0,

showing that under this assumption the sequence xn = 1
n

∑n−1
i=0 b(z

i) is almost
fixed by the affine action σ of G associated to b. The cocycle relation together
with the fact that Z is central imply that
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σ(g)xn =
1

n

n−1∑
i=0

b(gzi) =
1

n

n−1∑
i=0

b(zig) =
1

n

n−1∑
i=0

π(z)ib(g)

which goes to zero by the ergodic theorem (which states in general that this
converges to a G-invariant vector and is an immediate verification). Let φ :

H
1
(G, π1)→ H

1
(Z, π1) be the map in cohomology obtained by restricting cocy-

cles to the central subgroup Z. Using that Z is central and that the restriction of
π1 to Z is trivial, we deduce that b1(z) is a π(G)-invariant vector, which therefore

equals 0. It follows that b1 induces a cocycle b̃1 for the representation π̃1 of Q.
It is easy to see that b1 is an almost coboundary if and only if b̃1 is an almost
coboundary. So we conclude thanks to the fact that Q has WAPt.

Let us now prove the general case. As a CGLC abelian group, Z has a cocom-
pact discrete subgroup Λ isomorphic to Zd for some d. Then G/Z is quotient
of G/Λ with compact kernel, and hence by Proposition 4.8, G/Λ has Property
WAPt. Then by an iterated application of the case with discrete cyclic kernel,
G has Property WAPt as well. �

Corollary 4.10. Among compactly generated locally compact groups, the class
of compactly presented groups with Property WAPt is closed under taking cen-
tral extensions.

Proof. Let G be compactly generated, with a central subgroup Z such that G/Z
is also compactly presented and has Property WAPt. Since G/Z is compactly
presented and G is compactly generated, Z is compactly generated. Hence Propo-
sition 4.9 applies (and G is compactly presented). �

Since CGLC nilpotent groups are compactly presented, we deduce

Corollary 4.11. [[BRS13], Theorem 8] CGLC nilpotent groups have Property
WAPt.

4.4. Cocompact subgroups.

Lemma 4.12. Let G be a locally compact group, H a closed normal cocompact
subgroup. Let (V, π) be a Banach G-module. If b ∈ Z1(G, V ) is an almost
coboundary in restriction to H, then it is an almost coboundary.

Proof. Use a bounded measurable section P ⊂ G, so that P × H → G is a
measurable bijective map (with measurable inverse). Denote by y 7→ ŷ the section
G/H → P . Let (vn) be a sequence of H-almost fixed vectors. Let S be a compact
generating subset of H; enlarging S if necessary, we can suppose that PS contains
a compact generating subset of G.
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Define ξn =
∫
x∈P α(x̂)vndx. Then for y ∈ G/H and s ∈ S, we have

ξn − α(ŷs)ξn =

∫
x∈P

α(x)vndx− α(ŷs)

∫
x∈P

α(x)vndx

=

∫
x∈G/H

α(x̂)vn −
∫
x∈G/H

α(ŷsx̂)vndx

=

∫
x∈G/H

α(x̂)vn −
∫
x∈G/H

α(ŷsŷ−1x)vndx

=

∫
x∈G/H

(α(x̂)vn − α(x̂ν(x, y, s))vn)dx

=

∫
x∈G/H

π(x̂)(vn − α(ν(x, y, s))vn)dx,

with ν(x, y, s) = x̂−1ŷsŷ−1x. Since ν(x, y, s) belongs to some fixed ball of H
(independently of x, y, s), we have ‖vn − α(ν(x, y, s))vn‖ ≤ εn for some sequence
(εn) depending only of this ball, tending to zero. Thus ‖ξn − α(ŷs)ξn‖ ≤ cεn,
where c = supg∈G ‖π(g), ‖ and hence (ξn) is a sequence of almost fixed points for
G. �

Proposition 4.13. Let G be a locally compact group and H a closed cocompact
subgroup.

(1) if H has Property WAPap, so does G;
(2) if H has Property WAPt and is normal in G, then G has Property
WAP fd.

Proof. Suppose that H has PropertyWAPap. Let V be a G-module with V G,ap =
0 and b ∈ Z1(G, π). Since H is cocompact in G, we have V H,ap ⊂ V G,ap and hence
V H,ap = 0. By Property WAPap of H, b is an almost coboundary in restriction
to H, and hence on G by Lemma 4.12. Hence G has Property WAPap.

Now assume that H is normal and has Property WAPt. Let V be a WAP G-
module and b a 1-cocycle that is not an almost coboundary. Since H is normal,
Theorem 2.13(1) implies that V decomposes as a G-invariant direct sum V =
V H ⊕ V2. Decompose b = b1 + b2 accordingly. Since H has Property WAPt, b2

is an almost coboundary in restriction to H, and hence, by Lemma 4.12, b2 is an
almost coboundary on G. Hence b1 is not an almost coboundary (on G). But
b1 is a group homomorphism in restriction to H, and since H is CGLC, b1(H)
generates a finite-dimensional subspace F of V . Since H is normal, this subspace
is π(G)-invariant. By Proposition 2.11, F as a complement W in V H as a G-
module, and under the decomposition V = F⊕(W⊕V2) we have b = b1 +(0+b2),
where b1 is unbounded. This shows Property WAP fd. �

Theorem 4.14. Properties WAPt and WAP fd are inherited by closed cocom-
pact subgroups H ⊂ G of finite covolume.
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Proof. We start with Property WAPt. Let (V, π) be a WAP H-module and c a
1-cocycle. We use the notation of §3.3; in particular (E, IndGHπ) is the induced
G-module. Assuming that c is nonzero in the reduced cohomology, we get that
c̃ is also nonzero in reduced cohomology. Decompose the cocycle c̃ = c̃1 + c̃2

according to the decomposition E = E1⊕E2 (see Theorem 2.13(1)). Since G has
WAPt, and c̃ is nonzero in reduced cohomology, we obtain that c̃1 is a nonzero
group homomorphism. Therefore, integrating c̃1 over µ as in (3.4) gives back a
non-zero group homomorphism H → V which, being a 1-cocycle, is valued in
V H . Hence V H 6= 0, proving Property WAPt.

Now suppose G has WAP fd. We argue in the same way, but instead with
E1 = EG,ap (using Theorem 2.13(2) instead). We obtain a decomposition E =
F ⊕ W of G-module, with F finite-dimensional, such that the corresponding
decomposition c̃ = c̃1 + c̃2 has c̃1 unbounded (hence not an almost coboundary).
Write ci = c̃i ∈ Z1(H, π). Then c1 is also not an almost coboundary, and in
addition, has its range contained in a finite-dimensional subspace. Clearly the
subspace V1 spanned by the range of c1, being the affine hull of the orbit of 0 in
the affine action defined by c1, is π-invariant. By Proposition 2.11, we can find
an H-module complement V = V1 ⊕ V2, and the projection of c1 is just c1. On
the other hand, c̃2 being an almost boundary, so is c2, as well as its projections.
Since c = ¯̃c, we have c = c1 + c2, and the projection of c to V1 differs from c1 by
a bounded function, and hence is unbounded. This proves that H has Property
WAP fd. �

Remark 4.15. We could not adapt this proof to Property WAPap.

Theorem 4.16. Every compactly generated, locally compact group G with poly-
nomial growth has Property WAP fd.

Proof. By Losert’s theorem [Lo87] (due to Gromov in the discrete case), for such
G, there exists a copci (proper continuous with cocompact image) homomor-
phism to a locally compact group of the form N oK with N a simply connected
nilpotent Lie group and K a compact Lie group. Let W be the kernel of such a
homomorphism.

Then N has Property WAPt by Corollary 4.11, and hence N oK has Prop-
erty WAP fd by Proposition 4.13(2), and hence G/W has Property WAP fd by
Theorem 4.14, and in turn G has Property WAP fd by Proposition 4.8. �

4.5. Stability under RCE.

Theorem 4.17. If a countable group Λ has Property WAP fd and Λ randomly
cocompactly embeds inside another countable group Γ, then Λ has WAP fd as
well.

Proof. The proof is almost identical to that of Theorem 4.14 but we reproduce
it for the sake of completeness. Assume that Λ randomly cocompactly embeds
inside Γ and that Γ has PropertyWAP fd. Consider a WAP Λ-module (V, π) and
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a 1-cocycle c ∈ Z1(Λ, π). Assuming that c is nonzero in the reduced cohomol-
ogy, we get that c̃ := Ic is also nonzero in reduced cohomology. By Proposition
3.3, the induced Γ-module (E, IndΓ

Λπ) is WAP. Hence there is a decomposition
E = F ⊕W of Γ-module (see Theorem 2.13(2)), with F finite-dimensional, such
that the corresponding decomposition c̃ = c̃1 + c̃2 has c̃1 unbounded (hence not an
almost coboundary). Write ci = T c̃i ∈ Z1(H, π). Then c1 is also not an almost
coboundary, and in addition, has its range contained in a finite-dimensional sub-
space. Clearly the subspace V1 spanned by the range of c1, being the affine hull
of the orbit of 0 in the affine action defined by c1, is π-invariant. By Theorem
2.11, we can find an Λ-module complement V = V1 ⊕ V2, and the projection of
c1 is just c1. On the other hand, c̃2 being an almost boundary, so is c2, as well
as its projections. Since c = TIc, we have c = c1 + c2, and the projection of c to
V1 differs from c1 by a bounded function, and hence is unbounded. This proves
that H has Property WAP fd. �

4.6. Property AP fd. The following part is notably motivated by Question 4.6.
Let G be a locally compact group. Let K(G) be the intersection of all kernels

of continuous homomorphisms into compact groups. Then K(G) is itself such a
kernel (using a product). Note that by the Peter-Weyl theorem, it is also the in-
tersection of all kernels of continuous homomorphisms into the finite-dimensional
orthogonal groups O(n).

Next, define K†(G) to be the intersection of all kernels of continuous ho-
momorphisms into the finite-dimensional isometry groups Rn o O(n). Clearly,
H = G/K†(G) is the largest quotient of G such that K†(H) = 1.

Recall that g ∈ G is distorted if there exists a compact subset S of G containing
g such that lim |gn|S/n = 0, where | · |S is the word length with respect to S
(in particular, this includes elements of finite order and more generally elliptic
elements, for which (|gn|S) is bounded for suitable S).

Proposition 4.18. K(G)/K†(G) is abelian, and contains no nontrivial element
that is distorted in G/K†(G).

Proof. We can suppose that K†(G) is trivial. So we have to prove that K(G) is
abelian and has no nontrivial distorted element.

If u, v ∈ K(G) do not commute, we can find n and a continuous homomorphism
G→ RnoO(n) such that [u, v] is not in the kernel. Since u, v ∈ K(G), both are
mapped to translations, and we have a contradiction. Also, if u ∈ K(G)r{1}, we
can find a continuous homomorphism as above such that u is not in the kernel,
and hence u maps to a translation. Then we have a contradiction since the
translation is undistorted in the group of Euclidean isometries. �

This yields a method to “approach” G/K†(G) from G: first mod out by the

closure of the derived subgroup [K(G),K(G)]. Then mod out by the closure of



24 CORNULIER AND TESSERA

the subgroup of the abelian subgroup K
(
G/[K(G),K(G)]

)
consisting of those

elements that are distorted in G/[K(G),K(G)].

Example 4.19. Let G be a real triangulable Lie group. Then K†(G) is equal
to the derived subgroup (because the derived subgroup is equal to K(G) and its
elements are at least quadratically distorted).

If G = G(Qp) for some linear algebraic Qp-group G, let H = G/N be the
largest quotient with no simple factor of positive Qp-rank, with abelian unipotent
radical, and whose maximal Qp-split torus centralizes the unipotent radical. (By
Borel-Tits, G is compactly generated if and only if : H is reductive.) Then N(G)
is contained in K†(G). (If G is compactly generated, then H(Qp) is compact-by-
abelian.)

Proposition 4.20. G has Property AP fd if and only if G/K†(G) has Property
AP fd. If N is any closed normal subgroup contained in K†(G), this is also equiv-
alent to: G/N has Property AP fd.

Proof. It is trivial that Property AP fd passes to quotients, hence it passes from
G to G/N and from G/N to G/K†(G). Now suppose that G/K†(G) has Property
AP fd. Let V be an almost periodic G-module and b a 1-cocycle that is not an
almost coboundary. By Proposition 2.4, the G-representation factors through a
compact group; in particular, it is trivial on K(G). So on K(G), b is given by
a continuous group homomorphism K(G) → V . We claim that b vanishes on
K†(G). Assume the contrary by contradiction: pick g ∈ K†(G) with b(g) 6= 0.

Then by Lemma 2.10, there exists f ∈ V ∗[G] such that f(b(g)) ≥ 2. Since V ∗[G] is

almost periodic, the union of finite-dimensional submodules is dense (Corollary
2.8), and hence there is f ′ ∈ V ∗[G] inside a finite-dimensional submodule M ⊂ V ∗[G]

such that f ′(b(g)) ≥ 1. Let W be the orthogonal (for duality) of M , it has
finite codimension and b(g) /∈ W . This means that the projection of b in V/W
is nonzero. Hence g is not in the kernel of the affine action on V/W . Hence
g /∈ K†(G), a contradiction. �

Say that G has Property AP fd if every almost periodic Banach G-module V
with V G = 1, we have H1(G, V ) = 0.

The same proof also shows:

Proposition 4.21. Let G be a locally compact group. Then G has Property
AP fd if and only if G/K†(G) has Property AP fd. In particular, if G has Property
WAPap, it has Property WAP fd if and only if G/K†(G) has Property AP fd.

Let us now provide information about K†(G) in more specific examples.

Lemma 4.22. Let G be a compactly generated locally compact group in the
class C′′. Then G/K†(G) has polynomial growth.

Proof. We first see that Contr(G) ⊂ K†(G). This amounts to showing that in
H = Rn o O(n) we have K†(H) = {1}: indeed first in L = O(n) we have
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K†(L) = {1} because L is compact and hence has closed conjugacy classes; it
follows that K†(H) ⊂ Rn, and clearly the conjugacy classes of H contained in
Rn are compact.

By Lemma 7.3, we deduce that Udiv ⊂ K†(G). Since the class C′′ is stable
under taking quotients, we are reduced to proving that if G belongs to the class
C′′ satisfies Udiv = {1}, then G has polynomial growth. Indeed in this case, U
is compact and since G = UN and N has polynomial growth, the conclusion
follows. �

The previous lemma is a way to show that G/K†(G) is small in many relevant
examples. In contrast, the following proposition shows that it is often large in
the setting of discrete groups.

Proposition 4.23. Let Γ be a discrete and finitely generated group. Then
K(Γ) = K†(Γ) is the intersection of all finite index subgroups of G.

Proof. Denote by R(Γ) the intersection of all finite index subgroups of Γ. Clearly,
K†(Γ) ⊂ K(Γ) ⊂ R(Γ). The remaining inclusion R(Γ) ⊂ K†(Γ) follows from
Malcev’s theorem that finitely generated linear groups are residually finite. �

5. A dynamical criterion for property WAPap

This section contains the central ideas of this paper. It culminates with Theo-
rem 5.12, which provides dynamical criteria for Properties WAPt and WAPap.
The latter is designed to apply to groups from the class C. The following lemmas
are the key ingredients. It starts with Lemma 5.2, an analogue of Mautner’s
phenomenon.

5.1. Mautner’s phenomenon.

Definition 5.1. Let G be a locally compact group, and let N be a subgroup of G.
Denote by Contr(N) the set of elements g ∈ G such that there exists a sequence
an ∈ N such that a−1

n gan → 1. Such an element g is called N -contracted.

Note that Contr(N) is stable under inversion; it is not always a subgroup.

Lemma 5.2. (Mautner’s phenomenon) Let G be a locally compact group, N
a subgroup, and L the subgroup generated by Contr(N). Consider a separately
continuous, uniformly Lipschitz action of G on a metric space X. Then the
subspace XN,ap of almost periodic points (Definition 2.1) is contained in the
subspace XL of L-fixed points.

Proof. Let C be the supremum of all Lipschitz constants of the G-action. Fix
u ∈ Contr(N), a sequence (an) with an ∈ N and εn = a−1

n uan → 1.
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Consider x ∈ XN,ap. Write ux = anεna
−1
n x. Let J be an infinite subset of

integers such that (a−1
n x)j∈J converges, say to x′. Then

d(anεna
−1
n x, x) ≤d(anεna

−1
n x, anεnx

′) + d(anεnx
′, anx

′) + d(anx
′, x)

≤Cd(a−1
n x, x′) + Cd(εnx

′, x′) + Cd(x′, a−1
n x)

n∈J−−→
n→∞

0.

This shows that ux = a−1
n εnanx = x. �

Lemma 5.2 generalizes Mautner’s phenomenon, as well as [Sh04, Lemma 5.2.6];
both were written in a more specific context for G; in addition in Mautner’s result
the metric space is a Hilbert space with a unitary representation; in Shalom’s
result X is an arbitrary metric space with an isometric action; in both cases the
result takes the form XN ⊂ XL. We will use the following consequence of Lemma
5.2.

Lemma 5.3. Let G a locally compact group, and N a subgroup of G. Define
M as the normal subgroup generated by Contr(N), and H = MN . Consider
a separately continuous, uniformly Lipschitz action of G on a metric space X.
Then

(1) if H = G, then XN = XG;
(2) if H is cocompact in G, then XN,ap = XG,ap.

Proof. By definition N acts trivially on XN , and by Lemma 5.2, M acts trivially
on XN . Hence, in the context of (1), MN is dense and hence G acts trivially on
XN .

Assume now as in (2), and write H = MN , which is cocompact. Then by
Lemma 5.2, M acts trivially on XN,ap. In particular H preserves XN,ap, and the
H-action on XN,ap factors through H/M . Since N has a dense image in H/M ,
it follows that the closure of H-orbits in XN,ap coincide with closure of N -orbits,
which are compact by assumption. This shows that XN,ap = XH,ap.

Finally, we have XH,ap = XG,ap by Lemma 2.3. �

5.2. Controlled Følner sequences and sublinearity of cocycles. We now
recall some material from [CTV07], also used in [T09].

Definition 5.4. [CTV07] Let G be a locally compact group generated by some
compact subset S and equipped with some left Haar measure µ. A sequence of
compact subsets Fn ⊂ G of positive measure is called a controlled Følner sequence
if either G is compact, or Diam(Fn) → ∞, and there exists a constant C ≥ 1
such that for all n ∈ N and all s ∈ S,

µ(sFn M Fn) ≤ C
µ(Fn)

Diam(Fn)
.

Remark 5.5. Let G be a compactly generated group with a compact generating
subset S. For n, let f(n) be the smallest m such that the m-ball contains a
compact subset F of positive measure such that µ(sFn M Fn) ≤ µ(Fn)/n. Then
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G is amenable if and only if f(n) <∞ for all n, and admits a controlled Følner
sequence if and only if lim inf f(n)/n <∞. Actually in all examples we are aware
of groups with controlled Følner sequences, we indeed have f(n) = O(n); notably
strong controlled Følner sequences of Definition 6.3 satisfy this property.

The following is [CTV07, Corollary 3.7] in the case of unitary Hilbert modules.

Proposition 5.6. (Sublinearity versus triviality of cocycles) Let G be a
CGLC group and let (V, π) be a uniformly bounded Banach G-module. Let
b ∈ Z1(G, π) be a 1-cocycle.

If b is an almost coboundary, then it is sublinear, i.e. ‖b(g)‖ = o(|g|) when |g|
goes to infinity. The converse holds if G admits a controlled Følner sequence: if
b is sublinear, then it is an almost coboundary.

Proof. Both implications are adaptations of the original proof for unitary Hilbert
G-modules, up to some technical points, which we emphasize below.

Denote C = supg∈G ‖π‖, and by S a compact generating subset of G; let
| · | be the word length in G with respect to S. If b ∈ Z1(G, π) and T ⊂ G,
denote ‖b‖T = sups∈S ‖b(s)‖T . Then we have, for all g ∈ G, the inequality
‖b(g)‖ ≤ C|g|‖b‖S.

Suppose that b is an almost coboundary. For ε > 0, there exists a bounded
cocycle b′ such that ‖b−b′‖ ≤ ε/C on S. Say, ‖b′‖G ≤ cε. Then, using the previous
inequality for the cocycle b− b′, we have for all g ∈ G, ‖b(g)‖ ≤ ‖b′(g)‖ + ‖(b−
b′)(g)‖ ≤ c+ |g|ε. Thus, for |g| ≥ cεε

−1, we have ‖b(g)‖|g| ≤ 2ε.

Now assume that G admits a controlled Følner sequence and let us prove the
converse. Suppose that b is sublinear. Let (Fn) be a controlled Følner sequence
in G. We need to define a sequence (vn) ∈ V N by

vn =
1

µ(Fn)

∫
Fn

b(g)dg.

Here is the technical issue: since V is not assumed to be reflexive, we have to
be more careful to claim that this integral is well-defined. Since Fn is compact, it
follows that on Fn, we can write the function b (or any continuous function to a
normed space) as a uniform limit of simple functions. This implies that g 7→ b(g)
is Bochner-integrable.

We claim that (vn) defines a sequence of almost fixed points for the affine
action σ defined by σ(g)v = π(g)v + b(g) (which is equivalent to saying that b is
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an almost coboundary). Indeed, we have (noting that σ(s)b(g) = b(sg))

‖σ(s)vn − vn‖ =

∥∥∥∥ 1

µ(Fn)

∫
Fn

σ(s)b(g)dg − 1

µ(Fn)

∫
Fn

b(g)dg

∥∥∥∥
=

∥∥∥∥ 1

µ(Fn)

∫
Fn

b(sg)dg − 1

µ(Fn)

∫
Fn

b(g)dg

∥∥∥∥
=

∥∥∥∥ 1

µ(Fn)

∫
s−1Fn

b(g)dg − 1

µ(Fn)

∫
Fn

b(g)dg

∥∥∥∥
≤ 1

µ(Fn)

∫
s−1FnMFn

‖b(g)‖dg.

Since Fn ⊂ Sn, we obtain that

‖σ(s)vn − vn‖ ≤
C

n
sup

|g|S≤n+1

‖b(g)‖,

which converges to 0. �

5.3. Combing. An important feature of the groups studied in this article is the
following “combing” property.

Definition 5.7. Let G be a locally compact group generated by some compact
subset S, and let H ≤ G be a closed subgroup. We say that G is H-combable
if there exists an integer k ∈ N and a constant C ≥ 1 such that every element
g ∈ G can be written as a word w = w1 . . . wk in the alphabet S ∪H with

(5.8)
k∑
i=1

|wi|S ≤ C|g|S.

Remark 5.9. It is easy to check that being H-combable does not depend on the
choice of S. Moreover, assuming for convenience that S is symmetric with 1, it is
equivalent to the existence of constants k, ` such that Sn ⊂ ((S`n ∩H)S)k for all
n. In most examples, we actually have a stronger property: there exist constants
k, ` such that Sn ⊂ ((S` ∩H)nS)k for all n.

If G is H-combable with k as above, then G ⊂ (HS)k. In particular, when H
is compact, then G is H-combable if and only if G is compact. However, there
are many interesting cases where G is H-combable with H being nilpotent and
G having exponential growth.

The following lemma is immediate, but we emphasize it to show how this
property can be used.

Lemma 5.10. Let G be a CGLC group and H a closed subgroup such that G
is H-combable. Let ` be a length function on G that is sublinear on H (with
respect to the restriction to H of the word length of G). Then it is sublinear on
G.
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In particular, if H is compactly generated and ` is sublinear on H (with respect
to its intrinsic word length), then ` is sublinear on G. �

5.4. Injectivity of the restriction map in 1-cohomology.

Lemma 5.11. (Restriction in 1-cohomology) Let G be a locally compact
group and N a closed subgroup. Suppose that G has a controlled Følner sequence
and is N -combable. Let V be a WAP G-module. Then the restriction map
H1(G, V )→ H1(N, V ) is injective.

Proof. We can change the norm to an equivalent G-invariant norm. Consider a
cocycle b ∈ Z1(G, π). Suppose that in restriction to N , b is an almost coboundary.
Then by Proposition 5.6, b is sublinear in restriction to N , i.e. ‖b(a)‖ = o(|a|S).
Note that ‖b‖ is sub-additive, because the norm is G-invariant. Since G is N -
combable, one thus deduces from Lemma 5.10 that b is sublinear on all of G,
and therefore is an almost coboundary by Proposition 5.6, using that G has a
controlled Følner sequence. �

5.5. Dynamical criteria for Properties WAPt and WAPap. We are now
ready to state and prove the main result of this section.

Theorem 5.12. Let G be locally compact group, and let N be a closed subgroup.
Let H be the closure MN of the subgroup generated by N ∪M , where M is the
normal subgroup generated by Contr(N). Assume:

(1) G has a controlled Følner sequence;
(2) G is N -combable;
(3) N has Property WAPt;
(4) H is dense in G.

Then G has Property WAPt.
Still assume (1) and (2) along with:

(3’) N has Property WAPap;
(4’) H is cocompact in G.

Then G has Property WAPap.

Proof. Suppose that (1), (2), (3), (4) hold. Let V be a Banach G-module with

V G = 0. By (4) and Lemma 5.3(1), V N = 0. By (3), H1(N, V ) = 0. By Lemma

5.11 and (1), (2), it follows that H1(G, V ) = 0. So G has Property WAPt.
Similarly, suppose that (1), (2), (3’), (4’) hold. Let V be a Banach G-module

with V G,ap = 0. By (4’) and Lemma 5.3(2), V N,ap = 0. By (3’), H1(N, V ) = 0.

By Lemma 5.11 and (1), (2), it follows that H1(G, V ) = 0. So G has Property
WAPap. �

6. Groups in the class C

6.1. Families of examples in the class C. We start proving that two impor-
tant classes of groups belong to the class C introduced in Definition 3.
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Proposition 6.1. The following groups belong to the class C:

(1) real triangulable connected Lie groups;
(2) groups of the form G = G(Qp), where G is a connected linear algebraic

group defined over Qp such that G is compactly generated and amenable.

Proof. (1) Let G be a real triangulable connected Lie group. Let N be a Cartan
subgroup and U = V its exponential radical. So U is the intersection of the lower
central series, N is nilpotent, and G = UN . The N -action on the Lie algebra
g induces a grading on g, valued in the dual Hom(n,R) of the abelianization of
n, for which n = g0 and u is the subalgebra generated by the gα for α 6= 0. By
definition, a weight is an element α in Hom(n,R) such that gα 6= {0}. Then
there exists k and a (possibly non-injective) family of nonzero weights α1, . . . , αk
such that, denoting Vi = Vαi

, we have U = V1 . . . Vk; we omit the details since
this is already covered by [CT17, §6.B]. The existence of elements in N acting as
contraction on Vi is straightforward, and thus all the data fulfill the requirements
to belong to the class C.

(2) Write G = Uo (DK), where U is the unipotent radical, and some reductive
Levi factor is split into its Qp-split part D (a torus, by the amenability assump-
tion) and its Qp-anisotropic part K (so K(Qp) is compact). Define N = D(Qp)
and V = U(Qp). Thus U = V oK(Qp), so V is closed cocompact in U . Then in
the grading on g induced by the D-action (which takes values in a free abelian
group of rank dim(D), namely the group of multiplicative characters of D), v is
generated by the nonzero weights: as a consequence of the assumption that G is
compactly generated. Then the proof can be continued as in the real case (being
also covered by the work in [CT17, §6.B]). �

Proposition 6.2. Every virtually connected amenable Lie group G belongs to
the class C′ (Definition 6).

Proof. By [CT17, Lemma 3.A.1] (based on [C08, Lemmas 2.4 and 6.7]), there
exist copci homomorphisms G ← G1 → G2 ← G3 with G3 triangulable. In
addition, G1 → G2 has normal image (as it is mentioned in the proof of that
lemma that G2 is generated by its center and the image of G1). Thus G belongs
to the class C′. �

6.2. Controlled Følner sequences for groups in the class C”.

Definition 6.3. In a CGLC group G with compact generating symmetric subset
S with 1 and left Haar measure µ, we call strong controlled Følner sequence, a
sequence of positive measure compact subsets (Fn) such that Fn belongs to a ball
of radius O(n) and

µ(F ′n)

µ(Fn)
= O(1),

where F ′n = FnS
n is the n-tubular neighborhood of Fn with respect to word

metric associated to S.
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In [T11], the pair (Fn, F
′
n) is called a controlled Følner pair. An easy argument

[T11, Proposition 4.9] shows that if (Fn) is a strong controlled Følner sequence,
then there exists kn ∈ {1, . . . , n} such that (FnS

kn) is a controlled Følner sequence
(Definition 5.4).

We shall need the following result from [CT17] (which is proved there for a
smaller class of groups but the proof readily extends to our setting).

Lemma 6.4. [CT17, Theorem 6.B.2] Fix a CGLC group G = UN in the class
C”. Let S and T be compact generating subsets of respectively G and N . There
exist constants µ1 and µ2 > 1 such that the following holds. For every small
enough norm ‖ · ‖ on u, denoting by U [r] the exponential of the r-ball in (u, ‖ · ‖),
we have, for all n, the inclusions

Sn ⊂ U [µn2 ]T n, U [µn1 ]T n ⊂ S2n.

By a straightforward application of the Baker-Campbell-Hausdorff formula, we
obtain the following lemma.

Lemma 6.5. Let u be a finite-dimensional nilpotent Lie algebra over a finite
product of non-archimedean local fields of characteristic zero. Consider a norm
‖ · ‖ on u. There exists d ∈ N such that for all r ≥ 2

〈U [r]〉 ⊂ U [rd],

where 〈U [r]〉 is the (compact) subgroup generated by U [r].

In the proof of [Gu73, Theorem II.1], Guivarc’h provides an asymptotic de-
scription of Kn, where K is a compact symmetric generating subset of a nilpotent
connected Lie group G, which in particular implies the following lemma.

Lemma 6.6. Let u be a finite-dimensional nilpotent Lie algebra over R. Consider
a norm ‖ · ‖ on u. For every compact symmetric generating subset K of U , there
exists C > 1 and ε > 0 such that for all integers r ≥ 2,

U [εr1/C ] ⊂ Kr ⊂ U [rC ].

We deduce the following corollaries:

Corollary 6.7. Under the assumptions of Lemma 6.4, and assuming in addition
that U is totally disconnected, there exist constants λ1 and λ2 > 1 such that the
following holds. For every norm ‖ · ‖ on u, denoting by U [r] the exponential of
the r-ball in (u, ‖ · ‖), we have, for all large enough n, the inclusions

Sn ⊂ 〈U [λn2 ]〉T n, 〈U [λn1 ]〉T n ⊂ S2n.

Corollary 6.8. We keep the assumptions of Lemma 6.4, assuming in addition
that U is connected, and that K is a compact generating set of U . Then there
exist constants β1 and β2 > 1 such that the following holds. For all large enough
n, we have the inclusions

Sn ⊂ Kβn
1 T n, Kβn

2 T n ⊂ S2n.
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Finally, we shall use

Lemma 6.9. Under the assumptions of Lemma 6.4, there exists λ > 1 such that
for all r ≥ 1, n ∈ N, g ∈ U [r], and h ∈ T n,

h−1gh ∈ U [λnr].

In particular, if U is connected, and K is a compact generating subset of U , there
exist α, b ≥ 0 such that for all integers r ≥ 2, n ≥ 1, for all g ∈ Kr and h ∈ T n,

h−1gh ∈ Kdαnrbe.

Proof. Let λ be the supremum over all t ∈ T of the operator norm of t acting on
the normed vector space (u, ‖·‖). The first statement is now a direct consequence
of the fact that the operator norm is submultiplicative. The second statement
follows from Lemma 6.6. �

Theorem 6.10. Every CGLC group G = NU in the class C” (in particular in
the class C) admits a strong controlled Følner sequence.

Proof. We write U = UR × Una, where UR is connected, and Una is totally dis-
connected. Fix some large enough integer µ (to be specified later) and define

Fn = (Kµn × 〈Una[µn]〉)T n,

where K is a compact symmetric generating subset of UR.
By Corollaries 6.7 and 6.8, there exists C > 0 such that Fn ⊂ SCn. Now

observe that if µ is large enough, Lemma 6.9 implies that

〈Una[µn]〉T n〈Una[λn1 ]〉 = 〈Una[µn]〉T n.

On the other hand, assuming µ ≥ βb1λ, we have

KµnT nKβn
1 ⊂ Kµn+λnβbn

1 T n ⊂ K2µnT n.

We deduce that

F ′n ⊂ (〈Una[µn]〉 ×K2µn)T 2n.

Finally, in order to conclude, we observe that by the doubling property for both
N and UR, there exists an integer k such that for all all n there exist finite
subsets Xn ⊂ N and Yn ⊂ UR of cardinality at most k such that T 2n ⊂ T nXn

and K2µn ⊂ YnK
µn . Hence we have

F ′n ⊂ YnFnXn,

from which we deduce that

|F ′n| ≤ k2|Fn|. �
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6.3. Combability of groups in the class C”.

Theorem 6.11. CGLC groups in the class C” are N -combable in the sense of
Definition 5.7.

Proof. Let G ∈ C and let S be a compact generating subset of G. For convenience,
we shall assume that the generating set S = SU ∪ SN , where SU ⊂ U (resp.
SN ⊂ N). We assume that i = 1, namely that G = UN , with U being a
nilpotent algebraic group over some local field K; the general case being similar.
Let q : G→M := G/U . For every g ∈ G of size n, its projection has length ≤ n
with respect to q(S), hence g can be written as a product g = um, such that m
has length equal to |q(g)| ≤ n, and u has length ≤ n+ |q(g)| ≤ 2n. Therefore, it
is enough to prove (5.8) for g = u.

Consider a finite-dimensional faithful representation of U as unipotent matrices
in Md(K) and equip the latter with a submultiplicative norm ‖ · ‖. We shall use
the notation � and ' to mean “up to multiplicative and additive constants”.

Moreover, an easy calculation (using that U is unipotent) shows that for all
u1, . . . , un ∈ U ,

(6.12) ‖u1 . . . un‖ � nd max
i
‖ui‖.

We shall also use the fact that given a norm ‖ · ‖Lie on the Lie algebra u of U ,
one has

log ‖u‖ ' log ‖ log(u)‖Lie,

where log : U → u is the inverse of the exponential map. This estimate follows
from the Baker-Campbell-Hausdorff formula, using that log and exp are polyno-
mial maps. The action by conjugation of N on U induces a group homomorphism
N → Aut(u). Let ‖ · ‖op be the operator norm on End(u), that by abuse of no-
tation we consider as a norm on elements of N . Let C = maxm∈SN

‖m‖op and
K = maxu∈SU

‖u‖Lie.

Lemma 6.13. For all u ∈ U , |u|S � log ‖u‖.

Proof. Assume that |u|S = n, and so that u = m1u1 . . .mnun, where the ui ∈ SU
and mi ∈ SN . Denote hg = g−1hg. One has the following formula

u = um1
1 um1m2

2 . . . um1...mn
n .

by (6.12), by submultiplicativity, one has

‖u‖ � nd max
i
‖um1...mi

i ‖.

On the other hand, for every i, ‖um1...mi‖Lie ≤ ‖m1 . . .mi‖op‖ui‖Lie ≤ KCn. The
lemma follows. �

In addition, we have

Lemma 6.14. [CT17, Lemma 6.B.3.] There exists an integer ` such that every
element x ∈ U can be written as v1 . . . v` with vi ∈

⋃
j Vj, and max ‖vi‖ � ‖u‖.
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Thanks to the previous lemma, it is enough to treat the case where U = Vj.
Therefore we can assume that there exists t ∈ N contracting all of U . Up to
replacing it by some power, we can assume that ‖t‖op ≤ 1/2. For convenience,
let us assume that SU contains all elements u ∈ U such that ‖u‖Lie ≤ 1. Given
an element u ∈ U such that ‖u‖Lie ≤ 2n, it follows that the element ut

n
belongs

to SU . It follows from Lemma 6.13, that every element u ∈ U such that |u|S ≤ n
can be written as tn

′
u0t
−n′ , where n′ � n and u0 ∈ SU . This finishes the proof

that G is N -combable. �

7. Proof of Theorem 4 and other results

7.1. Proof of Theorem 4. We need to check all four requirements of Theorem
5.12:

• G has a controlled Følner sequence: this is done in §6.2.
• G is N -combable: this is done in §6.3.
• N has PropertyWAPt: this is easy (Corollary 4.11 with Proposition 4.8)

The last requirement, (4), can actually fail, but we can arrange it to hold
enlarging N , replacing it with N ′ = NW for some suitable compact subgroup W
normalized by N . Namely, we use:

Lemma 7.1. Let U be a open subgroup in a finite product L of unipotent real
and p-adic fields. Then the divisible subgroup Udiv of U is closed, cocompact in
U and contains the real component.

Proof. Since U decomposes as a product over the components, we can suppose
L is real or p-adic for a single p. In the real case, necessarily U = L. Suppose
that L is p-adic. Then Udiv =

⋂
n φ

n(U), where φ(u) = up. Since u is a self-
homeomorphism of L, φn(U) is closed and hence Udiv is closed; this implies that
it is a p-adic subgroup, and it easily follows that it is Zariski-closed. An extension
of two divisible nilpotent groups is divisible. In particular, in the quotient L/Udiv,
the open subgroup group U/Udiv has no p-divisible element. Since φ contracts to
0, we can deduce that U/Udiv is compact. �

Lemma 7.2. Let G be a group in the class C, with U,N as in the definition. Then
G has a compact subgroup W ⊂ U , normalized by N , such that U = UdivW .

Proof. The quotient U/Udiv is compact, and is a product of various unipotent
p-adic groups. So the N -action is necessarily distal (only eigenvalues of modulus
1).

Let Una be the elliptic radical of U , so Una×U◦. Let U1 be the distal part of the
N -action on Una. Then the restriction to Una of the quotient map U → U/Udiv is
surjective. Moreover, U1 is an increasing union of its N -invariant compact open
subgroups. Hence there exists an N -invariant compact open subgroup W of U1

whose image in U/Udiv is surjective. �
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To conclude, we define N ′ = NW . This does not affect the first condition, nor
the second since we pass to a larger subgroup N . Since Property WAPt is also
invariant under extensions by compact kernels (Proposition 4.8), N ′ has Property
WAPt. Finally, the last verification (Lemma 7.3) is that the subgroup generated
by Contr(N ′) is equal to Udiv and we deduce that H = G.

Lemma 7.3. The subgroup V generated by Contr(N) is equal to Udiv.

Proof. Clearly, the image of Contr(N) in the compact group U/Udiv is trivial.
Hence Contr(N) ⊂ Udiv. Thus V̄ is cocompact in Udiv. It is easy to see that
Udiv has no proper cocompact subgroup: indeed, if Udiv is abelian, its quotient by
V̄ is a compact, divisible totally disconnected abelian group and apart from the
trivial group, this does not exist (since nontrivial profinite groups have nontrivial
finite quotients). So, when Udiv is abelian, we deduce that V is dense. But in
this case, it is clear that V is closed, since it is generated by some eigenspaces.
So V = Udiv when U is abelian.

In general, we deduce that V [Udiv, Udiv] = Udiv, that is, V generates the nilpo-
tent group Udiv modulo commutators, and deduce that V = Udiv. �

7.2. Other results.

Theorem 7.4. Every compactly generated locally compact group G having an
open subgroup G′ of finite index in the class C′′ (Definition 14) has Property
WAP fd.

Proof. Along with Theorem 4.16 and using the second part of Theorem 5.12 the
above proof shows that G′ has PropertyWAPap. That G′ has PropertyWAPap

follows from Proposition 4.13(1).
Then we observe that G/K†(G) has polynomial growth (see §4.6 for the defi-

nition of K†(G)), by Lemma 4.22, and hence has Property WAP fd by Theorem
4.16. Hence G/K†(G) has Property AP fd, and in turn, by Proposition 4.20, G has
Property AP fd. Since G has Property WAPap, this shows that G has Property
WAP fd. �

Note that by Proposition 4.21, we have a criterion whether G has Property
WAPt, namely if and only if the group of polynomial growth G/K†(G) has
Property WAPt.

Proof of Corollary 7. The statement is that locally compact groups in the class
C′ (Definition 6) have Property WAP fd. Indeed, consider G → G1 ← G2 → G3

as in Definition 6. Since G3 belongs to the class C, it has Property WAPt

by Theorem 4 Since G2 → G3 is copci and G3 has Property WAPt, G2 has
Property WAPt by Theorem 4.14 and Proposition 4.8. Since G2 → G1 is copci
with normal image, it follows that G1 has Property WAP fd by Proposition 4.13
and Proposition 4.8. By Theorem 4.14 again (for Property WAP fd this time)
and Proposition 4.8, it follows that G has Property WAP fd. �



36 CORNULIER AND TESSERA

Proof of Corollary 8. This follows from Corollary 7 in combination with Propo-
sition 6.2. �

Theorem 7.5. Let G be a connected solvable Lie group. Then every WAP
Banach G-module with nonzero reduced first cohomology has a 1-dimensional
factor (with nonzero first cohomology).

Proof. This follows from Corollary 8, using that finite-dimensional unitary irre-
ducible representations of connected solvable Lie groups have complex dimension
one. �

8. Subgroups of GL(n,Q)

8.1. Unipotent closure. Let (Gi) be a family of locally compact groups, with
given compact open subgroups Ki. The corresponding semirestricted product is
the subgroup of

∏
iGi consisting of families of whose coordinates are in Ki with

finitely many exceptions (in other words, it is the subgroup generated by
∏
Ki

and
⊕

Gi); it has a natural group topology for which
∏
Ki is a compact open

subgroup. We denote it by
∏(Ki)

i Gi.

If Hi ⊂ Gi is a family of closed subgroups,
∏(Ki∩Hi)

i Hi naturally occurs as a

closed subgroup of
∏(Ki)

i Gi. We call it a standard subgroup (according to this
given decomposition).

Now assume that, p ranging over the prime numbers, Gp is a p-elliptic locally
compact group (in the sense that every compact subset of G is contained in a
pro-p-subgroup). Then we have

Lemma 8.1. Every closed subgroup H of
∏(Kp) Gp is standard.

Proof. Let us show that H is closed under taking under all projections. Fix a
prime q. That Z is dense in

∏
p Zp implies that there exists a sequence (ni) in

Z such that ni → 1 in Zq and ni → 0 in Zp for all p 6= q. Then for every

x ∈
∏(Kp) Gp, the sequence xni tends to the projection of x on Gp. In particular,

if x ∈ H, then this projection also belongs to H.
Now let Hp be the projection of H on Gp. Then the closed subgroup generated

by the Hp contains
∏

p(Hp ∩ Kp) and contains
⊕

pHp. Thus
∏(Kp∩Hp) Hp is

contained in H. Conversely, H is contained in both
∏

pHp and
∏(Kp) Gp, and

the intersection of these two is by definition
∏(Kp∩Hp) Hp, so H is contained in∏(Kp∩Hp) Hp; we conclude that these subgroups are equal. �

Recall that the ring of adeles is the semirestricted product A =
∏(Zp)

p Qp;
the diagonal inclusion embeds Q as a dense subring into A and as a discrete
cocompact subring in A×R.

Definition 8.2. Let H be a subgroup of GLm(Q). We define its fine closure
as the subgroup C(H) of GLm(A ×R) generated by the closures of the various
p-adic projections πp(H), and the Zariski closure C0(H) of the real projection.
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Lemma 8.3. Let H be a subgroup of GLm(Q) conjugate to a subgroup of upper
unipotent matrices. Then H is cocompact in its fine closure C(H).

(It is well-known that the condition is equivalent to assuming that each element
of H is unipotent.)

Proof. Denote by Cp(H) the closure of the projection of H in GLm(Qp) and C+(H)
the closure of subgroup they generate in GLm(A), so that C(H) = C+(H) ×
C0(H). Denote by π+ and π the natural embeddings GLm(Q) → GLm(A) and
GLm(Q)→ GLm(A×R).

By the assumption, Cp(H) is p-elliptic for every prime p. Then by Lemma

8.1, π+(H) is dense in C+(H) =
∏(Cp(H)∩Zp)

p Cp(H). Let K be the compact open

subgroup
∏

p(Cp(H)∩Zp). Then this implies that C+(H) = π+(H)K. Therefore,

C(H) = π(H)(K × C0(H)).
We claim that the projection of π(H) ∩ (K × C0(H)) is cocompact in C0(H).

Indeed, in a connected unipotent real group U , a subgroup is cocompact if and
only if it is Zariski-dense, if and only it is not contained in the kernel any nonzero
homomorphism U → R. Assume by contradiction we have such a homomorphism
f on C0(H). Pick (u, b) ∈ π(H) with u ∈ C+(H) and b ∈ C0(H) with f(b) 6= 0.
Then there exists n ≥ 1 such that un ∈ K. Hence (un, bn) ∈ π(H)∩ (K ×C0(H))
but f(bn) = nf(b) 6= 0, a contradiction.

So the projection of π(H) ∩ (K × C0(H)) is cocompact in C0(H). This implies
(pulling back by a quotient homomorphism with compact kernel) that π(H) ∩
(K × C0(H)) is cocompact in K × C0(H). Since K × C0(H) is an open subgroup
and C(H) = π(H)(K×C0(H)), this implies that π(H) is cocompact in C(H). �

Now, let Γ be a finitely generated, virtually solvable subgroup of GLm(Q).
Let U be its unipotent radical (the intersection with the unipotent radical of
its Zariski closure, which is also the largest normal subgroup of Γ consisting of
unipotent elements). So Γ/U is finitely generated and virtually abelian. Identify
Γ with its image in GLm(A×R).

Proposition 8.4. C(U) is open in ΓC(U), which is closed in GLm(A×R), and
Γ is cocompact in ΓC(U).

Proof. Choose a partial flag in Qm that is Γ-invariant with irreducible successive
quotients. This yields an upper block-triangular decomposition. Then U acts
trivially on the irreducible subquotients, which means it acts by matrices with
identity diagonal blocks. Let φ be the homomorphism mapping a matrix that is
upper triangular in this decomposition to its “diagonal trace”, that is, replacing
all upper unipotent blocks with 0. Then the kernel of φ : Γ→ φ(Γ) is exactly U .
Moreover, φ extends to ΓC(U) and φ(ΓC(U)) = φ(Γ), which is discrete. Hence
the kernel C(U) of φ : ΓC(U)→ φ(Γ) is open in ΓC(U). This implies in particular
that ΓC(U) is closed in GLm(A×R).
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Lemma 8.3 ensures that U is cocompact in C(U), and the cocompactness state-
ment follows. �

8.2. Partial splittings.

Lemma 8.5. Let M be a locally compact group and s a contracting automor-
phism of M . Define f(g) = gs(g)−1. Then f is a self-homeomorphism of M .

Proof. We wish to define its inverse as F (g) = gs(g)s2(g) . . . ; we need to check
that this product is “summable” (uniformly on compact subsets, namely that∏n+`

k=n s
k(g) tends to 1 when n tends to +∞, uniformly in ` and for g in any given

compact subset.
If M is totally disconnected, then it has a compact open subgroup K such

that s(K) ⊂ K, and then
⋂
n≥0 s

n(K) = {1}. Then the summability condition
immediately follows.

If M is connected, then M is a finite-dimensional real vector space with a linear
contraction and the summability is a standard verification.

The general case follows from the fact that M decomposes canonically as topo-
logical direct product of M◦ and its elliptic radical, which is totally disconnected
[Sie86, Prop. 4.2].

Once the summability is established, it is immediate that F ◦ f and f ◦ F are
both the identity of G. �

Lemma 8.6. Let G be a locally compact group in an extension 1→M → G→
A → 1, with M and A abelian. Assume that some element g of G right-acts on
M as a contraction. Then the centralizer of g is a section of the extension.

Proof. LetH be the centralizer of g. ClearlyH∩M = {1}. So it is enough to show
that HM = G. Equivalently, letting h be any element of G, we have to show that
the equation [hm, g] = 1 has a solution m ∈M . Here the commutator is defined
as [X, Y ] = X−1Y −1XY and satisfies the identity [XY,Z] = [X,Z]Y .[Y, Z]. Then
[hm, g] = [h, g][m, g]. By Lemma 8.5, m 7→ [m, g] is a self-homeomorphism of M .
So indeed we obtain a unique solution. �

In the following lemma, we refer to Definition 5.1 for the definition of Contr(F ).

Lemma 8.7. Let G be a locally compact group in an extension 1 → U →
G → A → 1, with A compactly generated abelian and U sub-unipotent (over
a finite product of adic and real fields), i.e., a closed subgroup of a unipotent
group containing the real component. Then G has a compactly generated, closed
subgroup F such that FU = G and F has polynomial growth, and F ∩U◦ is the
distal part of U◦. Moreover, if G is compactly generated, the subgroup generated
by F and Contr(F ) is cocompact.

Proof. We first prove the result with F not assumed compactly generated (so
polynomial growth means that all its open, compactly generated subgroups have
polynomial growth). The result immediately follows, since we can replace then
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F with a large enough compactly generated open subgroup F ′ still satisfying
F ′U = G (since G/U is compactly generated).

We argue by induction on the dimension of U (the sum of its real and p-
adic dimensions for various p). If dim(U) = 0, then U = 1 and the result
is trivial. Let Z be the last term of the lower central series of U . Then Z
has positive dimension. If the action of A on Z is distal (i.e., all eigenvalues
have modulus 1), we define M = Z; otherwise, in the Lie algebra we find an
irreducible non-distal submodule, which corresponds to an irreducible submodule
M of Z; in both cases M has positive dimension. We can argue by induction
for 1 → U/M → G/M → A → 1 to get a closed subgroup L/M of polynomial
growth with LN = G and (L/M) ∩ (U/M)◦ is the distal part of (U/M)◦. If Z
is distal as A-module, then L also has polynomial growth and we are done with
F = L. Otherwise, M is irreducible non-distal and L contains the distal part of
U◦. We have the extension 1→ L∩U → L→ L/L∩U → 1. Note that L∩U is
sub-unipotent, making use that L∩U◦ is connected. If dim(L) < dim(U), we can
argue once more by induction within L to find the desired subgroup. Otherwise,
L ∩ U is open in U . This means that (L ∩ U)/M is open in U/M , and if this
happens, G/M has polynomial growth. If U is not abelian, this forces G to have
polynomial growth, and then we are done with F = L. Otherwise U is abelian.
In this case, if the distal part is nontrivial, we can argue in the same way with
M = D. If the distal part is trivial, and we choose M irreducible as above, the
previous argument works as soon as U/M is nontrivial. So the remaining case is
when U is irreducible and non-distal; in particular the distal part of U◦ is trivial.
In this case, there exists an element acting as a contraction (if g acts non-distally,
the contraction part of either g or g−1 is a nonzero submodule, hence is all of
M), so we can invoke Lemma 8.7.

Now suppose that G is compactly generated and let us prove the last statement.
It is enough to show that the subgroup of U generated by (F ∩U)∪Contr(F ) is
cocompact, i.e., contains Udiv. First, it contains U◦, because we have ensured that
F∩U contains the distal part. For the non-Archimedean part, thatG is compactly
generated implies that U is compactly generated as normal subgroup (because
G/U is compactly presented, being abelian), and hence it follows that the non-
Archimedean part of Udiv is contained in the subgroup generated by Contr(F )
(indeed, otherwise we would obtain an A-equivariant quotient of U isomorphic to
Qk
p with an irreducible distal action, for some p, k and get a contradiction). �

Proposition 8.8. Let Γ be a finitely generated amenable subgroup of GLm(Q),
and let G = ΓV ⊂ GLm(A×R) with V = C(U) as defined as before Proposition
8.4. Then G has an open normal finite index subgroup G′ of the form V F
with F compactly generated of polynomial growth, such that the subgroup of G′

generated by F ∪ Contr(F ) is cocompact. In particular, G′ belongs to the class
C′′ (Definition 14).
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Proof. Γ has a finite index subgroup Λ whose Zariski closure is unipotent-by-
abelian. It follows that G′ = ΛV is open normal of finite index in G, and G′/V
is abelian. So Lemma 8.7 applies. The last statement immediately follows. �

Corollary 8.9. Every finitely generated amenable subgroup of GLm(Q) embeds
as a cocompact lattice into a locally compact group G with an open subgroup of
finite index G′ in the class C′′. �

Corollary 8.10. Every finitely generated amenable subgroup of GLm(Q) has
Property WAP fd, and hence has Property Hfd.

Proof. Use the notation of Corollary 8.9, so that G′ belongs to the class C′′. By
Theorem 7.4, we deduce that G has Property WAP fd. Hence by Theorem 4.14,
Γ has Property WAP fd: �

Using that every finitely generated VSP group is quotient of a virtually torsion-
free finitely generated VSP group [KL17], and the fact that WAP fd passes to
quotients, this can be improved to

Corollary 8.11. Every finitely generated amenable VSP group has Property
WAP fd.

Corollary 8.12. For every finitely generated VSP group G equipped with a
finite generating subset S, there exists c > 0 such that the Lp-isoperimetric
profile inside balls (see §1.3) satisfies

(8.13) J bG,p(n) ≥ cn.

Proof. By Lemma 6.4, groups of the class C′′ have a strong controlled Følner
sequence (called a controlled Følner pair in [T11]). By [T11, Proposition 4.9],
this implies that groups of the class C′′ satisfy (8.13). On the other hand, G
being quasi-isometric to its cocompact hull, we deduce from Theorem 15 and
[T08, Theorem 1] that every amenable finitely generated subgroup of GLm(Q)
satisfies (8.13). Now, we once again apply the main result of Kropholler and
Lorensen [KL17] and the fact that J b∗,p behaves well under taking quotients [T13,
Theorem 1] to conclude. �

9. Mean ergodic theorem and Bourgain’s theorem

9.1. Proof of Proposition 19. The “if” part was already addressed in the in-
troduction. For the other direction, suppose that G does not haveWAPt, but has
WAP fd. This means that G has a finite-dimensional orthogonal representation π
with nonzero first reduced cohomology and no non-zero invariant vector. Now, re-
call that by the standard Gaussian construction (see [BHV08, Corollary A.7.15]),
one can assume that π is a subrepresentation of some orthogonal representation π′

of G coming from a measure-preserving ergodic action on some probability space
X. Let b be a 1-cocycle for π that is not an almost coboundary, and let b′ be the
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corresponding cocycle for π′: note that since π has no invariant vectors, b′ is or-
thogonal to the space of constant functions. One therefore has b′(g)(x) = c(g)(x)
where c is a square-integrable cocycle c : X×G→ R of zero average. Using that
b′ is not an almost coboundary, one easily checks that 1

|g|(c(g)(x)) does not tend

to zero in L2-norm as |g| → ∞. In particular the ergodic theorem for G in L2

(defined similarly) fails; since the inclusion L2(X)→ L1(X) is continuous, it also
fails in L1.

Remark 9.1. The above proof works with no change if G has Property Hfd and
not Ht. This is actually more general, since the reader can easily check that if G
has Property WAP fd but not WAPt, then it has Property Hfd but not Ht.

9.2. Proof of Corollary 21. For every commutative unital ring R and t ∈ R×,
consider the group

A(R, t) =

{(
tn x
0 t−n

)
;x ∈ R, n ∈ Z

}
⊂ GL2(R).

Let us fix some prime p. Note that the ring Fp[t, t
−1] embeds densely in Fp((t)),

but the diagonal embedding Fp[t, t
−1] → Fp((t)) ⊕ Fp((t)) sending t to (t, t−1) is

easily seen to be discrete and cocompact. The lamplighter group Lp = Fp oZ can
be described as A(Fp[t, t

−1], t), and therefore embeds as a cocompact lattice in
G = (Fp((t)))

2 o Z, where Z acts by multiplication by t on the first factor and
by t−1 on the second factor. First, we note that this implies that Lp has WAPt.
On the other hand the group G, and therefore Lp quasi-isometrically embeds

as a subgroup of
(
A(Fp((t)), t)

)2
. Observe that A(Fp((t)), t) acts properly and

cocompactly on the Bass-Serre tree of SL(2,Fp((t))). It follows that Lp embeds
quasi-isometrically into a product of two (p + 1)-regular trees. Therefore, in
order to show Bourgain’s theorem, it is enough to prove that Lp does not quasi-
isometrically embed into any superreflexive Banach space. Since Lp is amenable,
by [NP, Theorem 9.1] it is enough to prove that Lp does not admit any affine
isometric action on some superreflexive Banach space E whose orbits are quasi-
isometrically embedded. Consider the 1-cocycle b associated to such an action.
Since Lp has Property WAPt, this cocycle decomposes as b = b1 + b2, where b1

is a group homomorphism to E, and b2 is an almost coboundary. Approximating
b2 by coboundaries, one easily checks that it is sublinear, namely ‖b2(g)‖/|g| → 0
as |g| → ∞ (where | · | is some arbitrary word metric on Lp). This clearly implies
that b cannot be a quasi-isometric embedding. So the corollary is proved.

Remark 9.2. Note that in Corollary 21, we only recover the qualitative part
of Bourgain’s theorem. Indeed, the latter also provides optimal quantitative
estimates on the distortion (as in [T11]), which do not follow from the approach
here.
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